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Modeling the Effect of Amino Acids and Copper on
Monoclonal Antibody Productivity and Glycosylation:
A Modular Approach

Yu Luo, Robert J. Lovelett, J. Vincent Price, Devesh Radhakrishnan, Kristopher Barnthouse,
Ping Hu, Eugene Schaefer, John Cunningham, Kelvin H. Lee, Raghunath B. Shivappa,
and Babatunde A. Ogunnaike*

In manufacturing monoclonal antibodies (mAbs), it is crucial to be able to
predict how process conditions and supplements affect productivity and
quality attributes, especially glycosylation. Supplemental inputs, such as
amino acids and trace metals in the media, are reported to affect cell
metabolism and glycosylation; quantifying their effects is essential for
effective process development. We aim to present and validate, through a
commercially relevant cell culture process, a technique for modeling such
effects efficiently. While existing models can predict mAb production or
glycosylation dynamics under specific process configurations, adapting them
to new processes remains challenging, because it involves modifying the
model structure and often requires some mechanistic understanding. Here, a
modular modeling technique for adapting an existing model for a fed-batch
Chinese hamster ovary (CHO) cell culture process without structural
modifications or mechanistic insight is presented. Instead, data is used,
obtained from designed experimental perturbations in media
supplementation, to train and validate a supplemental input effect model,
which is used to “patch” the existing model. The combined model can be
used for model-based process development to improve productivity and to
meet product quality targets more efficiently. The methodology and analysis
are generally applicable to other CHO cell lines and cell types.

1. Introduction

Regulatory authorities are increasingly requiringmonoclonal an-
tibody (mAb) manufacturers to employ systematic approaches for
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developingmedia recipes and for determin-
ing process operating conditions to meet
production targets based onmodels.[1] Such
models should capture precisely how pro-
cess inputs (e.g., media recipes, operation
conditions) affect the product attributes
of interest, especially antibody productivity
and glycosylation. N-linked glycosylation,
a post-translational modification wherein
oligosaccharides are enzymatically attached
to the protein, is a critical quality attribute
(CQA) monitored in mAb production. This
is because the distribution of oligosaccha-
ride structures (glycans) can have a signif-
icant impact on in vivo function of an an-
tibody .[2–4] Since media composition has
been shown to have a significant impact
on glycan distribution, cellmetabolism, and
cell productivity ,[5–7] in this paper, we de-
velop a dynamic mathematical model that
captures the effect of media composition on
process dynamics during the manufacture
of mAbs in a Chinese hamster ovary (CHO)
cell culture process. We chose CHO cells as
the mAb producer because they are the pre-
dominant host cell line used to manufac-
ture mAbs,[8] and for illustrative purposes

only. The cell line used in this study is a glutamine synthetase
(GS)–based CHO derivative incapable of natively producing glu-
tamine. Our model was developed for a specific CHO cell line;
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Figure 1. A schematic representation of the modular approach.

however, the modeling methodology and analysis are generally
applicable to other cell lines and cell types.
We focused our analysis on asparagine, glutamate, and cop-

per in the media because their impact on the cell culture process
of manufacturing mAbs is known. Asparagine and glutamate
play crucial roles in glycolysis and in the tricarboxylic acid (TCA)
cycle—two major subprocesses in CHO cell metabolism. A high
asparagine level can lead to a high ammonia level, which in turn
can be detrimental to cell health, product quality, or both.[9,10]

Copper has been shown to affect lactate metabolism, increase
oxidative phosphorylation, and alter the glycan profile in mAb
products or charge heterogeneity.[11–13] The input variables of our
model therefore are the levels of asparagine, glutamate, and cop-
per inmedia. Such amodel, can be used to design newmAbman-
ufacturing processes to meet desirable productivity and product
quality targets by manipulating the levels of asparagine, gluta-
mate, and copper in media.
While mechanistic or semi-mechanistic models that can sim-

ulate CHO cell mAb production or glycosylation dynamics ac-
curately under predetermined process conditions exist[14–17] (see
two reviews of the current state of mathematical modeling that
appeared on the special issue in Current Opinion in Chemical
Engineering[18,19] for their nearly exhaustive list of recent models),
adapting them to new processes is challenging, mainly because
this often requiresmodifying the structure of suchmodels, which
can be time-consuming. To address this problem, we take a fun-
damentally different approach in this paper. Our proposed mod-
ular modeling approach preserves the structure of an existing
model, f 0, and augments it with a supplemental input model, 𝚫,
as illustrated in Figure 1. The supplemental input model, 𝚫, de-
scribes how the process responds to the new inputs (asparagine,
glutamate, and copper levels in media). Statistically designed or-
thogonal experiments were used to obtain data under the new
process conditions, and the resulting data sets were used to char-
acterize, in the form of the supplemental inputmodel,𝚫, the new
process information missing from the base model, f 0. Adding
𝚫 to f 0 as a “patch” allows us to update the process dynamics
when introducing not-yet-modeled process inputs without hav-
ing to re-develop the base model, f 0. We assume that 𝚫 is struc-
turally simple, and its contribution to overall model prediction
does not dominate that of f 0. 𝚫 is meant to be used to adapt, not
to replace, f 0 efficiently for new processes. If the contribution of
𝚫 exceeds that of f 0, then it is time to develop a new base model.
Unlike the semi-mechanistic base model, f 0, the supplemen-

tal input model, 𝚫, is data-driven and quantifies the effect of
“known unknowns,” such as amino acids and trace metals, on
cell metabolism and glycosylation when the actual mechanisms
are not well understood. Since the development of 𝚫 is indepen-
dent of the structure of f 0, the process of adapting an existing

model to new processes can be partitioned into two independent
subtasks: i) training 𝚫 and ii) recalibrating f 0. The resulting aug-
mented processmodel, f = f 0 + 𝚫, can then be used for efficient,
process-specific, and model-based process development to im-
prove process performance and to meet product quality targets.
We illustrate this procedure with a multiscale base model, f 0,

which describes process dynamics in two length-scales (macro-
scopic and microscopic) and two time-scales (slow and fast). The
slow, macroscale model describes the dynamics of cell growth,
metabolism, andmAb generation at the bioreactor level. The fast,
microscale model, on the other hand, describes the dynamics of
glycosylation at the molecular level where a series of enzymatic
reactions occur on the antibodies. As a result of the disparate
time-scales (hours and days for cell growth and minutes for gly-
cosylation), the microscale model’s transient dynamics were as-
sumed negligible compared with those of the macroscale model.

2. Experimental Section

2.1. Formulation of the Modular Model

The modular model consists of a semi-mechanistic base model,
f 0, and a data-driven, supplemental input model, 𝚫, designed to
augment the basemodel, which as constructed, is incapable of ac-
curately predicting the effect of asparagine, glutamate, and cop-
per on process dynamics. In the technique, this base model is
represented as a system of differential equations

dx
ds

= f 0(x;𝜽) (1)

where x ∈ ℝn
≥0 is a vector of n system state variables— cell densi-

ties, concentrations of nutrients, metabolites, mAbs, and distri-
bution of glycans; s is a scalar of the independent time or position
variable; 𝜽 ∈ ℝp is a vector of p model parameters. The supple-
mental process input vector (not shown in f 0), u ≡ [u1,… , um]

⊤ ∈
ℝm— asparagine, glutamate, and copper in the media (m = 3)—
is kept constant at predetermined, baseline levels, represented by
a vector u0 ∈ ℝm.
The base model, f 0, alone cannot predict the process outputs

accurately when the supplemental process inputs deviate from
their baseline levels, u0. Instead of modifying the structure of f 0
in order to incorporate new inputs, we augment by adding 𝚫 ≡
[Δ1,… ,Δn]

⊤ as follows

dx
ds

= f (x, u0, u;𝚯) = f 0(x;𝜽) + 𝚫(x, u − u0; 𝛽) (2)

where 𝚯 = {𝜽, 𝛽} is a vector of all model parameters: the base
model parameters, 𝜽, and the supplemental input model pa-
rameters, 𝛽, the dimension of which is yet to be determined.
f = f 0 + 𝚫 is the augmented model that can predict the process
outputs more precisely given the supplemental process inputs.
The supplemental input model determines the residual pro-

cess dynamics, 𝚫, based on howmuch the supplemental process
inputs, u, deviate from their baseline levels, u0. Let the dimen-
sionless vector, u = u0 ≡ [u0,1, u0,2, u0,3]

⊤ ≡ [−1,−1,−1]⊤, repre-
sent the supplemental process inputs at the baseline levels, and
u = [+1,+1,+1]⊤ represent their respective upper limits. The
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supplemental input model, 𝚫, is required to have the following
characteristics:

i) 𝚫 = 0 when u = u0. The effect of supplemental inputs is ab-
sent when asparagine, glutamate, copper are at their baseline
levels. The process dynamics can be described solely by the
base model, f 0.

ii) 𝚫 is a linear function of u − u0 (see Section 3.1 for an empir-
ical justification).

iii) Δi = 0 when xi = 0. This property ensures that the solution
to Equation (2) is guaranteed to be nonnegative since concen-
tration, cell density, and glycan distribution cannot fall below
zero.

The simplest and most parsimonious form for 𝚫, which also
satisfies these properties is

Δi(x, u − u0; 𝛽) = xi𝛽ij(uj − uj,0) (3)

which may be written in vector–matrix notation as

𝚫(x, u − u0; 𝛽) =
⎡⎢⎢⎣
x1

⋱
xn

⎤⎥⎥⎦ 𝛽(u − u0) (4)

where 𝛽 ∈ ℝn×m is a matrix containing the supplemental input
model parameters (recall that n is the number of state variables).
The xi term ensures the nonnegativity property by reducingΔi to
0 when xi = 0.

2.2. Base Model f 0

The multiscale base model, f 0, consists of a slow, macroscale cell
culture model and a fast, microscale glycosylation model (Fig-
ure 2). The macroscale model describes the dynamic behavior at
the bioreactor-level using a system of ordinary differential equa-
tions (ODEs)

dx
dt

= f 0(x;𝜽) = 𝜈(𝜽)r(x;𝜽) (5)

where x ∈ ℝ12 is a vector of 12 macroscale system state vari-
ables including nutrient, metabolite, mAb concentrations, and
cell densities; r ∈ ℝ10 is a vector of reaction, cell growth, and cell
death rates; 𝜈 ∈ ℝ12×10 is the stoichiometry matrix; 𝜽 ∈ ℝ35 is a
vector of macroscale base model parameters. The inputs to the
macroscale model are seeding cell density, nutrient concentra-
tions of the basal medium, and the daily feeding and sampling
volumes; the outputs are predicted mAb titer, viable cell density
(VCD), total cell density (TCD), and metabolite concentrations
over the course of a fed-batch run. The model structure and pa-
rameterization are presented in detail in the Supporting Infor-
mation.
The outputs from themacroscalemodel are then sent as inputs

to the microscale glycosylation model. The microscale model de-
scribes the glycosylation dynamics at the molecular level as new
antibodies undergo the post-translational, enzymatic glycosyla-
tion process in the Golgi. The outputs of the microscale model
are the glycan distributions as a function of time. The Golgi is

Cell culture (ODEs)

Recipe, fed-batch protocol

Intermediate variables

Glycosylation (PDEs)

Final glycans

Titer, viable cells, metabolites

Initial glycans

Figure 2. A schematic representation of the multiscale base model.

approximated as a plug flow reactor (PFR), therefore the system
of partial differential equations (PDEs) is used below to describe
the glycosylation dynamics inside the Golgi[14]

𝜕x
𝜕t

= −1
𝜏

𝜕x
𝜕z

+ 𝜈r (6)

where z is position along the Golgi; x ∈ ℝ30 ≡[
CM8 CM7, … , CFA2G2S2

]⊤
is a vector of 30 glycan concen-

trations (see the complete list of glycans in the Supporting
Information); 𝜏 = 22 min is the residence time of antibodies
inside the Golgi[14]; r ∈ ℝ38 is a vector of glycosylation reaction
rates; 𝜈 ∈ ℝ30×38 is the stoichiometric matrix for the glycosyla-
tion reactions (note that the notations x, r, and 𝜈 are reused for
system state, reaction rates, and stoichiometry in the microscale

model). x0 ∈ ℝ30 ≡
[
C, 0, 0, … , 0

]⊤
is the vector of initial

and boundary condition for Equation (6). Prior to entering the
Golgi, antibodies are first glycosylated with glycan M8 inside the
endoplasmic reticulum (ER). C is the initial M8 concentration
and also the average glycan concentration throughout the entire
glycosylation process inside the Golgi because the reactions
in question only change the type, not the amount, of glycans.
Since C is, by definition, the concentration of glycans from newly
synthesized antibodies, it can be calculated as follows

C = 2
ΔNmAb

ΔV
=
2qmAb

Q
(7)

where the number 2 is introduced to account for the two glycans
per mAb; ΔNmAb is the amount of new antibodies entering the
Golgi at a specific time;ΔV is the total volume of new antibodies;
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Q = 1.12 μm3 min−1 is the average flow rate of glycans through
the Golgi[14]; qmAb is the cellular productivity defined as

qmAb ≡
1

VCD
1
V

1
MWmAb

d
dt

(
CmAbV

)
(8)

where MWmAb is the average molecular weight of mAb (around
150 kDa).
Solving Equation (6) can be slow because of the large num-

ber of reactions involved and the usage of the finite difference
method to approximate a system of PDEs with a series of sys-
tems of ODEs. On the other hand, themacroscale andmicroscale
models describe dynamics of different time- and length-scales.
The macroscale cell culture dynamics are on the order of hours
and days while the microscale glycosylation dynamics are on the
order of minutes, reaching steady-state quickly. Because of the
time-scale difference, only the steady-state, instantaneous glycan
profile is needed, which can be computed by letting 𝜕x∕𝜕t = 0
and converting Equation (6) from PDEs to ODEs

dx
dz

= f 0(x;𝜽) = 𝜏𝜈r(x;𝜽) (9)

where the stoichiometry matrix, 𝜈 ∈ ℝ30×38, is well documented
in the literature[14]; 𝜽 ∈ ℝ44 is a vector of themicroscalemodel pa-
rameters (see Supporting Information for detailed model struc-
ture and parameterization). The exit concentrations (i.e., the con-
centrations at z = LGolgi) are then normalized to obtain the instan-
taneous distribution of glycans on the new antibodies produced at
a certain time point. To obtain the extracellular, cumulative glycan
distribution, a common glycan measurement, the instantaneous
glycan distribution over the culture time is integrated as

xec(t) =
∫ t
0 VCD(t

′)qmAb(t
′)x(t′)dt′

CmAb(t)
(10)

where xec ∈ ℝ30 is a vector of (cumulative) extracellular glycan
fractions; x is the vector of the instantaneous, intracellular mole
fractions of glycans; CmAb is the extracellular mAb concentration;
t′ is a dummy time variable of time used in the integral.

2.3. Experimental Design to Identify the Effect of Supplemental
Inputs

Orthogonal experiments were designed to determine and quan-
tify the effect of asparagine, glutamate, and copper levels in the
feed supplements onmAb productivity and glycosylation. The re-
sulting experimental data were then used to achieve a twofold ob-
jective: i) to quantify the effects these supplemental inputs in the
form of the model, 𝚫, and ii) to validate the model. The initial
design of experiments (DoE) featured a 23 factorial set of experi-
ments, where asparagine, glutamate, and copper concentrations
are either at the baseline level (−1: asparagine at 1.87 g L−1, glu-
tamate at 3.64 g L−1, and copper at 1.58 μ g L−1) or at an elevated
level (+1: asparagine at 3.68 g L−1, glutamate at 6.95 g L−1, and
copper at 35.0 μ g L−1). The eight conditions are labeled A01–A08
in Table 1 with three replicates per condition for a total of 24
experiment runs. Subsequently, another 23 set of experiments,
S01–S08, was designed for the purpose of generating data for

Table 1. Experimental design.

Experiment Asparagine Glutamate Copper

A01 −1 −1 −1

A02 +1 −1 −1

A03 −1 +1 −1

A04 +1 +1 −1

A05 −1 −1 +1

A06 +1 −1 +1

A07 −1 +1 +1

A08 +1 +1 +1

S01 −1∕3 −1∕3 −1∕3

S02 +1∕3 −1∕3 −1∕3

S03 −1∕3 +1∕3 −1∕3

S04 +1∕3 +1∕3 −1∕3

S05 −1∕3 −1∕3 +1∕3

S06 +1∕3 −1∕3 +1∕3

S07 −1∕3 +1∕3 +1∕3

S08 +1∕3 +1∕3 +1∕3

model validation with three factors occupying a narrower design
space than that of A01–A08 (more precisely, the range of each
factor in S01–S08 is half of that from A01–A08). A01–A08 and
S01–S08 represent 16 total unique experimental conditions; as-
paragine, glutamate, and copper are each varied at four different
concentration levels. Originally, it was planned to use the data
from experiments A01–A08 to train the model and then validate
the model using the data from experiments S01–S08. However,
such an arrangement, would lead to validating the model only
once. Instead, a leave-p-out cross-validation approach was used
by enumerating different combinations of training and valida-
tion data sets. As a result, the data sets from the two experimen-
tal designs were combined. Eighty percent of the data from the
combined data sets were used to estimate the model parameters,
and the remainder was used for model validation.
All experiments were carried out in fed-batch runs in 250 mL

baffled-shake flasks (Corning, Oneonta, NY) with an initial work-
ing volume of 100 mL. The shake flasks were agitated on an or-
bital shaker at 125 rpm in an environmental chamber at 36.5 ◦C
and 5% CO2. Cultures were seeded at 0.5 × 106 cells mL−1 in a
proprietary basal medium.
Each fed-batch run involved sampling and feeding procedures

typically executed at the beginning of each culture day. A sample
of the culture medium was taken daily to measure the concen-
trations of mAbs, cell densities, and metabolites, the glycan
abundances, and the reactor operating conditions (pH, osmolal-
ity, etc.). Antibody titer was measured using a high-performance
liquid chromatography (HPLC) with a prepacked Protein G im-
munodection column (Applied Biosystems, Bedford, MA). VCD
andTCDweremeasured using a BeckmanCoulter Vi-Cell XR cell
counter (Indianapolis, IN); cell culture metabolites (e.g., glucose,
lactate, and ammonia) weremeasured using a Cedex BioHT ana-
lyzer (Roche, Mannheim, Germany); glycan relative abundances
were measured using a liquid chromatography–mass spectrom-
etry (LC–MS) assay; pH and osmolality were measured using a
Bioprofile Flex analyzer (Nova Biomedical, Waltham, MA).
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Table 2. ANOVA results (p < .05∗, p < .01∗∗, p < .001∗∗∗).

Output Unit Asn Glu Cu Asn×Glu Asn×Cu Glu×Cu Asn×Glu×Cu

VCD 106 cells mL−1 −1.36∗∗ 0.953∗ 2.20∗∗∗ 0.718 1.22∗ −1.18∗ −0.583

TCD 106 cells mL−1 0.119 −0.133 0.364∗ −0.0325 −0.0475 −0.0575 −0.00417

Titer g L−1 −0.977∗∗ 0.0133 2.62∗∗∗ −0.107 0.252 0.195 −0.262

Lactate g L−1 0.21∗∗∗ −0.217∗∗∗ −0.833∗∗∗ 0.02 −0.0833∗ 0.13∗∗ 0.0267

Ammonia mm 0.0554∗∗∗ −0.025∗∗∗ −0.00806∗ 0.00244 −0.00307 −0.000993 −0.0019

Glucose g L−1 0.0125 0.0842 −0.249∗∗∗ −0.0408 −0.0775 −0.0125 0.0225

Glutamate g L−1 0.416∗∗∗ 0.845∗∗∗ 0.0944∗ −0.105∗ 0.00687 0.028 −0.0718

Glutamine g L−1 0.119∗∗∗ 0.207∗∗∗ 0.227∗∗∗ −0.0246 0.0514∗ −0.00122 −0.00195

Alanine g L−1 0.107∗ 0.157∗∗∗ −0.524∗∗∗ −0.00355 0.106∗ 0.0193 0.0662

Asparagine g L−1 0.00711 0.00526 −0.0346∗∗∗ 0.00163 0.00158 9.70 × 10−5 −0.00244

Aspartate g L−1 0.226∗∗∗ 0.223∗∗∗ 0.207∗∗∗ −0.0973 0.0689 −0.00762 −0.00112

Proline g L−1 0.0229 0.0714∗ −0.015 −0.0693 0.0938∗ 0.000777 0.014

Man5 1 −0.000161∗ −8.31 × 10−5 0.000585∗∗∗ 0.000126∗ −9.25 × 10−5 −5.53 × 10−5 4.91 × 10−5

G0F-GlcNAc 1 0.00021∗ 8.48 × 10−5 0.000166∗ −0.000187∗ −2.52 × 10−6 9.07 × 10−5 −7.73 × 10−5

G0 1 0.000478∗∗∗ 0.00023∗ −0.000922∗∗∗ −0.000291∗∗ 2.73 × 10−5 0.000101 −4.05 × 10−5

G0F 1 0.0187∗∗∗ −0.00251 −0.00451 −0.00543 0.00473 0.00445 −0.00321

G1F 1 −0.0166∗∗∗ 0.0022 0.00402 0.00517 −0.0041 −0.0042 0.00296

G2F 1 −0.00193∗∗∗ 7.54 × 10−5 0.00063∗ 0.000615∗ −0.000594∗ −0.00039 0.000307

Two feeds (feed A and feed B) were then added to the culture
immediately after sampling. Sixteen different feed A medium
recipes with different levels of asparagine, glutamate, and cop-
per were created according to the two experimental designs in
Table 1. Feed A was added to the reactor between culture days 3
and 13 based on the cell culture working volume; feed B contain-
ing a high level of glucose was added between culture days 3 and
16 such that the glucose concentration in the culture is at least
3 g L−1 after feeding.
Note that themacroscalemodel in Equation (5) is only valid for

constant-volume systems. Conditions in the fed-batch process
are different from batch-mode operation conditions because of
the periodic feeding and sampling activities mentioned above
for the former, during which, the system state, x, updates dis-
continuously and non-smoothly due to the volume expansion.
Therefore, fed-batch runs are simulated in segments: i) the
constant-volume, batch-mode dynamics are modeled by solving
Equation (5), and ii) the system state is updated instantaneously
after volume expansion according to the amount of samples
taken from and feeds added to the culture. The overall model,
f , was adjusted such that the state variable, x, is updated daily
according to the discrete-time dynamics equation below

x(k + 1) = g
(
x(k); u,𝚯

)
(k = 0,… , N − 1) (11)

where the state on the (k + 1)th day, x(k + 1), is a function of
the previous-day state and inputs. The discrete-time dynamics
function, g, describes both the abrupt state change from volume
expansion and the continuous evolution from constant-volume,
batch-mode kinetics.

2.4. Parameter Estimation

The model parameters, 𝚯, are estimated by minimizing a func-
tion of the difference between cell culture and glycosylation

measurements on N culture days, x(1),… , x(N), and the corre-
sponding model predictions, x̂(1),… , x̂(N), obtained from Equa-
tion (11). The specific objective function, V , used for parameter
estimation is the weighted sum of squared residuals

V(𝚯; u,𝕏) =
n∑
i=1

N∑
k=1

w2
i

(
xi(k) − x̂i(k)

)2
(12)

where 𝕏 = {xi(k)|k = 1,… , N} is the training data set, and
w1,… , wn are the weights chosen 1) to scale the n state variables,
x1,… , xn, according to their disparate magnitudes and 2) to as-
sign higher priority to variables of greater interest, such as mAb
concentration and cell densities (see Supporting Information for
the detailed weighting).

3. Results and Discussion

3.1. Statistical Analysis

We performed an analysis of variance (ANOVA) to determine
the statistical significance of the computed effects of asparagine,
glutamate, and copper levels in media on the final, end-of-run
(EoR) mAb titer, cell densities, metabolites, and glycan distribu-
tion. The results are unsurprising: all three factors showed sig-
nificant effects (p < 0.05) on mAb productivity, cell metabolism,
or glycosylation (Table 2). The level of asparagine affected VCD,
mAb titer, metabolites, and all the measured glycans (one can
disregard the effect of asparagine on aspartate as asparagine
is readily converted to aspartate via asparaginase in order for
asparagine and aspartate to enter the TCA cycle[20,21]). Duarte
et al.[22] found that continued asparagine availability led to a
shift in nitrogen metabolism, which resulted in increased am-
monia, glutamate, and glutamine secretion. These findings cor-
respond to the ANOVA results in this study that also show a
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Figure 3. In-sample validation of macroscale model (time series), error bars are the 95% confidence intervals, the root mean squared error (RMSE) is
used to quantify the accuracy of model prediction.

significant and positive correlation between asparagine level and
ammonia, glutamate, and glutamine levels. Similarly, the gluta-
mate level affected VCD, lactate, ammonia, a few amino acids,
and G0. Cultures supplemented with elevated levels of copper
showed significant variations in all measured quantities except
proline, G0F, and G1F. Specifically, copper has a significant, pos-
itive effect on titer and a significant, negative effect on lactate—
a phenomenon consistently observed in other CHO cell culture
processes.[12,13,23,24] A plausible explanation is that the increased
copper level is known to drive lactate consumption. Copper de-
ficiency reduces cytochrome c oxidase activity, limiting the abil-
ity of cells to produce ATP via oxidative phosphorylation. As a
result, cells switch to aerobic glycolysis to generate ATP, caus-
ing increased lactate production, which affects other metabolic
processes.[12,23]

The interactions (2- or 3-way) among asparagine, glutamate,
and copper, on the other hand, did not show a consistently
significant impact on either the mAb production or the final
glycan distributions. Such a lack of significant higher-order in-
teraction effects provides empirical support for the model for-
mulation, in which 𝚫 in Equation (4) is represented as a linear
function of u − u0. It is possible for the interaction effects of the
supplemental inputs on the process dynamics to be significant.
One can modify the supplemental input effect model to capture
such interaction effects by adding bilinear terms.We recommend
always performing a statistical analysis to determine the appro-
priate structure of 𝚫.

3.2. Model Validation

We validated the model prediction against data using two dif-
ferent approaches. First, we used all 16 data sets (A01–A08 and
S01–S08 in Table 1) to train the model, f , and to test its perfor-

mance, that is, in-sample model validation (see the estimated
parameters in the Supporting Information). We only performed
an in-sample validation of the base model, f 0, because the main
focus of this study is not the development of f 0 and the estima-
tion of its parameters; rather our focus is on using the modular
modeling approach to adapt such a base model to new processes.
Figure 3 shows the model prediction (dashes) superimposed on
measurements (dots) for mAb titer (scaled), VCD, TCD, lactate,
ammonia, and glucose. Figure 4 shows a comparison of the
model prediction and measured glycan distribution for each
unique experiment condition. Note the apparent shift in trend
in glycan distribution where G0F appears to decline initially
before starting to increase around culture day 5 (120 h). Due to
low cell count and product concentration at the beginning of a
fed-batch run, early glycan measurements are either unavailable
or unreliable. While the model is consistent with data, we are
unable to verify or disprove the trend definitively at this time.
Figure 5 is a plot of the EoR relative predictive residuals of titer,
cell densities, metabolites, and glycans (the closer to 0 the better).
The in-sample validation shows that the model can predict ac-

curately such variables as mAb titer, cell densities, and also G0F,
G1F fractions, which are closely related to antibody productiv-
ity and product quality. By adjusting the weights in the objective
function, V , in Equation (12), one can enhance the prediction ac-
curacy for certain quantities while lowering the accuracy for oth-
ers. Weights should be assigned based on the overall modeling
or process development objective. In this case, lactate, ammonia,
glucose, and some glycans were given relatively low weights be-
cause they are not directly related to mAb productivity or product
quality.
Subsequently, to test how well the supplemental input model,

𝚫, can make predictions under new conditions, we performed
a leave-p-out cross-validation exercise, that is, an out-of-sample
validation. Leave-p-out is an exhaustive cross-validation method
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Figure 4. In-sample validation of microscale model (time series).
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Figure 5. In-sample validation EoR relative residuals.

that is based on using all possible ways to divide the original data
into training and validation data sets. Such a method involves
training and validating the model

(m
p

)
times, wherem = 15 is the

number of the data sets with the supplemental process inputs
deviating from the baseline levels, and p is the number of data
sets selected to validate the model, and the remaining (m − p) is
the number of data sets selected to train the model. Here, we set
p = 3 because the number of validation runs is sufficiently large

(455 times), and at the same time, the validation process can be
completed within a reasonable time frame. In each of the 455
repeated training-testing runs, 12 out of a total of 15 data sets
were selected to estimate the parameters, 𝛽, of the supplemen-
tal input model, 𝚫, and the model was then tested against the
remaining 3 data sets (Figure 6). The model prediction based
on the testing set was recorded at the end of each validation
run.
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Figure 6. A schematic representation of the 1st, 2nd, and 455th runs of the leave-3-out cross-validation (the dark blue squares represent the training
set, and the light blue squares represent the testing set).
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Figure 7. Out-of-sample cross-validation EoR relative residuals.

Figure 7 shows a plot of EoR relative residuals from all 455
cross-validation runs. As was the case with in-sample valida-
tion, the cross-validation also has low EoR relative residuals for
mAb concentration, cell densities, and G0F, G1F fractions. The
cross-validation performance implies that the supplemental in-
put model, 𝚫, is able to produce reasonably accurate predictions
against new data.

4. Conclusions

In manufacturing therapeutic mAbs, it is crucial to be able to
predict how process inputs, such as media recipes and operating
conditions, affect process performance attributes. Here, we study
the effect of asparagine, glutamate, and copper levels in media
on antibody productivity and glycosylation using amodular mod-
eling approach. A supplemental input model, 𝚫, was developed
to capture these effects by augmenting an existing mechanistic
model, f 0. The augmented model, f = f 0 + 𝚫, is capable of
producing accurate predictions under different asparagine,
glutamate, and copper concentrations in media. We performed
cross-validation to ensure that the predictions obtained from the
supplemental input model, 𝚫, can generalize to new data. This
modular modeling approach can be used for efficient model
development while avoiding the often time-consuming task of
modifying a model’s structure. The mechanistic component, f 0,
is used to store structured information of the process kinetics
and to confine model predictions to a reasonable region; the
data-driven component, 𝚫, on the other hand, is used to capture
the “known unknowns”—effect of supplemental inputs on
process dynamics that may not be well understood—to expand
the prediction capability of the base model. While it is generally
applicable to any supplemental inputs one chooses to add to a

model, the modular modeling approach is expected to be particu-
larly useful in a model-based process development setting when
the mechanistic understanding of supplemental process inputs
is lacking, and where gaining such understanding might not be
practical or necessary for production purposes. In other cases,
when some mechanistic insights into how certain supplemental
inputs affect the process outputs are available, one might prefer
to adopt a more mechanistic approach (e.g., building flux-based
models to use extracellular metabolite concentrations to predict
intracellular nucleotide sugar levels, which are subsequently
used to predict the glycan distribution[25]). It is the modeler’s
job to select the most appropriate modeling methodology after
considering time constraint, data availability, process complexity,
and other relevant factors.
The modular modeling approach has its limitations, however.

First, the supplemental input model, 𝚫, approximates the effect
of supplemental process inputs by a linear function which may
not capture the effect accurately, especially when the deviation
from baseline is substantial. In such a case, resetting the base-
line, u0, may be necessary. Second, a data-driven model often has
more parameters than a mechanistic model that describes the
same process. As a result, the modular modeling approach may
introducemore parameters to the original model than would oth-
erwise be the case if the model structure was modified instead,
creating a potential problem of model “overfitting”. Reducing the
number of parameters based on sensitivity analysis of the sup-
plemental input model may be needed to avoid overfitting.
We envision the following potential usage and expansion of

the model. First, we plan to use the model to improve media
recipe design. By formulating the design as an optimization prob-
lem, one can use the model to adjust amino acid and trace metal
concentrations to meet productivity and product quality targets.
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Second, we plan to introduce additional supplemental process
inputs to the current model. Cell culture process operating con-
ditions such as pH, dissolved oxygen, dissolved carbon dioxide,
agitation, temperature, and pressure also affect process perfor-
mance and product quality in important ways.[8] Components
such as asparagine, glutamate, and copper in nutrient feeds,
which we studied in this paper, are part of the media recipes and
cannot be altered easily during a fed-batch run. In contrast, pro-
cess operating conditions can be adjusted in real time, making
them potential candidates as manipulated variables for on-line
control of mAb productivity and glycosylation—a strategy that
has not yet been attempted in the biopharmaceutical industry.[26]

Third, we plan to include the cell line effect in the model. CHO
cell dynamics are specific to the cell line used. Therefore, adapt-
ing an existing model to new cell lines requires capturing the ef-
fect of the specific cell line on the process dynamics. Unlike sup-
plement concentrations or process operating conditions, the “cell
line” is not a quantitative property and cannot be modeled as a
supplemental input directly. Instead, quantifiable characteristics
of a cell line, such as its specific productivity, may be modeled as
the supplemental input to capture the cell line effect. A thorough
literature review and relevant experiments are needed to identify
such quantitative cell line proxies. Being able to model the cell
line effect potentially allows us to use preliminary cell line devel-
opment data to update the model for effective design and control
of processes with new cell lines.
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