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ScienceDirect
The production of monoclonal antibody (mAb) therapeutics, a

rapidly growing multi-billion-dollar enterprise in the

biopharmaceutical industry, faces major challenges in

achieving desired productivity and product quality consistently.

These challenges, traditionally addressed by genetic

engineering and media recipe development, are now being

addressed with process systems engineering (PSE)

techniques. In this perspective paper, we discuss how this

alternative approach, comprising three components —

process modeling, estimation, and control — is being used to

address biomanufacturing challenges. We survey the state of

current practice for each component, identify existing gaps,

and highlight some advances needed to achieve routine

implementation of fully automated systems for optimal

bioprocess operations.
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Introduction
Valued at USD 239.8 billion in 2019 and forecasted to

grow at an annual rate of over 13% [1] — with therapeutic

monoclonal antibodies (mAbs) alone expected to gener-

ate a revenue of USD 300 billion by 2025 [2] — the

biopharmaceutical industry faces major challenges in

achieving desired productivity and product quality con-

sistently [3]. The industry has traditionally addressed

these challenges by focusing on improving the

manufacturing process via such techniques as genetic

engineering and media recipe development. Recently,

interest has grown in a process systems engineering

(PSE)-based approach, whereby the challenges are

addressed via process modeling, estimation, and control.
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This paper is concerned with reviewing the current status

and future needs of the PSE-based approach to meeting

the productivity and product quality goals in biomanu-

facturing simultaneously, efficiently, and consistently.

The three main components (i) developing mathematical

models (ii) estimating the system states and (iii) imple-

menting model-based optimal control strategies — are

presented in turn, discussing the state of current practice,

identifying existing gaps, and highlighting some of the

advancements that will be needed to achieve routine

implementation of fully automated systems for optimal

bioprocess operations in industrial practice.

Overview and scope

Even though the discussion in this paper applies to

bioprocesses in general, our focus will be on the manu-

facture of mAbs using fed-batch mammalian cell cultures,

as an exemplar. The primary operational objective of all
bioprocesses is ensuring both high productivity and high

product quality consistently. Specifically for mAb

manufacturing, the most common productivity attributes

are protein titer and biomass, and the critical quality

attributes (CQAs) of interest are extent of glycosylation,

glycan distributions, charge variants, and protein aggre-

gation [4]. In particular, glycosylation, a post-translational

modification where glycans are added to the protein, is

known to affect product attributes including stability, in
vivo efficacy, and cytotoxicity [4,5]. As a result of its

importance, significant effort has been devoted to under-

standing what affects the cellular process of glycosylation

(e.g. process conditions, media supplementation, cell

lines genetics [5]), and how these factors influence it.

The scope of this paper is therefore limited to modeling, estima-
tion, and control of glycosylation in the manufacture of mAbs.

The rest of the paper is organized as follows: we discuss

modeling first in Section ‘Modeling’, estimation next in

Section ‘Estimation’, and control last in Section ‘Control’,

with conclusions in Section ‘Conclusions’. All sections are

organized identically:

� First, we define each topic (modeling, estimation,

control) within the context of bioprocesses, with

emphasis on glycosylation.

� Next, we discuss the role of the specific section’s topic

in enabling us to meet the objectives of bioprocess

operations.

� Finally, we discuss the current status of the topic and

present our opinions about future needs (see Table 1

for a list of cited references for each topic).
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Table 1

List of cited references

Main category Sub category Reference

Modeling Review [6]

Kinetic-based [7–14]

Flux-based [15–19]

Data-driven [20–23]

Design of experiments [24–27]

Hybrid [28,29�,30�]
Agent-based [31–33]

Automatic generation [34,35]

Estimation On-line cell culture sensing [36–38]

On-line glycosylation sensing [39–43]

Soft sensors (non-bioprocess) [44–47]

Soft sensors (bioprocess) [48,49�,50]
Control Nutrient/metabolite [51,52�,53,54]

Product attribute (open loop) [55,56�,57,58]
Product attribute (closed loop) [59,60�]
Software–hardware integration [61]
Modeling
What and why

What is modeling? In the context of bioprocess systems

analysis, modeling is the process by which one devel-

ops — and validates — mathematical representations of a

bioprocess. The resulting models take the form of alge-

braic, ordinary differential, or partial differential equa-

tions, or combinations thereof; they can be obtained on

the basis of first-principles mechanisms, or strictly from

data, or from a combination of the two.

Why modeling? A validated bioprocess model is useful for

at least three things:

1. Process understanding:
(a) Every experiment performed on a process can only

generate a specific answer to the specific question

asked of the process by the experimental design.

For mAb manufacturing processes, where experi-

ments are lengthy and costly, a validated, high-

fidelity model allows us to investigate process

behavior under various conditions, rapidly and

inexpensively. The model also allows general

analyses of fundamental process characteristics

not possible with individual experiments. For

example, in [58], a validated theoretical model

was used to present the concept of ‘output con-

trollability’ of glycosylation — the extent to which

the process of glycosylation can be controlled —

an intrinsic characteristic that is impossible to

deduce from data.

(b) When the process does not yet exist (for example,

during the process design phase), a model can

serve as a convenient surrogate for generating

simulation data.
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(c) Mathematical models can also be used to design

optimal experiments that will produce high infor-

mation content data with minimum expenditure of

experimental effort.2. Process state estimation and output prediction: Models can

be used to estimate the values of internal process

variables that are not measurable on-line (e.g. meta-

bolic fluxes within the cell, glycan distribution on the

mAb protein molecule), and for predicting important

process outputs and attributes, such as productivity

and product quality, that are either also unmeasurable

on-line, or can only be measured infrequently.

3. Process control: A model that captures the relationship

between the set of manipulated variables and the set of

controlled variables of a process is central to the

implementation of model-based control. Such models

can be (and have been) used successfully to determine

the changes in the manipulated variables necessary to

achieve the desired objectives for the controlled

variables.

Current status

Existing cell culture models for predicting cell growth,

metabolism, and mAb production, and mAb glycosylation

models, generally fall into one of two broad categories:

mechanistic and data-driven [6]. The fundamental struc-

ture and basis of each model type determines its limita-

tions and the application for which it is most appropriate.

Mechanistic models are based on first-principle mecha-

nisms underlying the process in question. By definition,

developing such models requires extensive domain

knowledge and a substantial amount of effort. Neverthe-

less, even purely mechanistic based models rely on data

for parameter estimation and for model validation. From

the statistical theory of parameter estimation, the data

requirement for estimating model parameters with

acceptable precision varies in proportion to the number

of parameters in question. In general, fully mechanistic

models usually contain a large number of parameters,

some of which may not be determinable independently

with any degree of confidence. Under these circum-

stances, it is customary to adopt ‘semi-mechanistic’

approaches where only subsets of the known mechanisms

are included, replacing the rest with appropriate empirical

approximations, resulting in models with fewer parame-

ters [59,7]. Mechanistic models can only predict what the

mechanisms incorporated into the model allow. Often, for

mAb manufacturing processes, the mechanism of how

external inputs such as media recipes, supplements,

operating conditions, etc., affect bioprocess dynamics is

not understood sufficiently well, and such external inputs

are therefore not included in a mechanistic model. These

are the ‘known unknowns’; we know they exist, but their

mechanisms of operation are largely unknown. Adapting a

mechanistic model for new cell lines and/or new process

conditions to account for the effects these ‘known

unknowns’ requires structural modifications to the model.
www.sciencedirect.com



Bioprocess modeling, estimation, and control Luo, Kurian and Ogunnaike 3
A brief discussion of such models and how to adapt them

efficiently can be found in [30�].

Mechanistic models may be divided further into kinetics-

based models and flux-based models. Kinetics-based

models of cell culture typically consist of systems of

ordinary differential equations (ODEs), where cell

metabolism dynamics are described by variations of the

Monod equation of cell growth [8–10]. On the other hand,

kinetics-based models of glycosylation typically consist of

systems of partial differential equations (PDEs), in order

to capture adequately, both temporal and spatial dynam-

ics of the glycosylation reactions taking place in the Golgi

apparatus [11,12]. These kinetics-based models are most

appropriate for explaining observed phenomena, making

predictions of process behavior, and for analyzing intrinsic

bioprocess characteristics such as controllability [58].

They are usually not appropriate for situations where

the model needs frequent updates.

Flux-based models are typically used to describe steady-

state, genome-level behavior of cellular metabolism [15–

19]; they are not suitable for dynamic control. It is

technically possible to construct dynamic flux-based

models by introducing dynamic uptake rates of nutrients

as the model inputs; however, these inputs cannot be

used for process control because they cannot be manipu-

lated directly. Flux-based models are most appropriate for

cell-line development where genome-level characteris-

tics of the cells are altered to achieve certain desired

process behavior.

Data-driven models, unlike mechanistic models, describe

the relationships among process inputs and process out-

puts, strictly from experimental data, using equations that

have no biological basis. The parameters of such empiri-

cal models have no direct connection to biological mech-

anisms and are estimated entirely from data (e.g. [23]),

making these models merely descriptive of experimental

observation, not explanatory. Nevertheless, this modeling

paradigm is useful under many conditions of practical

importance.

First, when not much is known about the fundamental

mechanisms underlying the process in question, one can

always employ judiciously-designed experiments to

obtain process data, from which one can then develop

empirical models for various applications, including con-

trol systems design. Also, data-driven models are often

able to capture complex dynamics effectively using rela-

tively simple model structures. Even when sufficient

mechanistic information is available, the intended use

of the model may require that we choose a simpler-

structured, data-driven approach. For example, process

models intended for controller design need not be mech-

anistic; in fact, under certain circumstances, a mechanistic

model might be too complex for on-line control
www.sciencedirect.com 
applications [11,13]. Also, when the objective is to deter-

mine the design space for an existing pharmaceutical

process, it is often sufficient — sometimes even pre-
ferred — to employ strategies of statistical design of

experiments and the resulting ANOVA/simple regression

models [24–26]. In terms of model development, the

data-driven approach enjoys several advantages, includ-

ing the availability of many modeling technique options,

for example, basic linear/nonlinear regression, principal

component/partial least squares regression (PCR/PLSR),

markov chains, artificial neural nets [15,20–23]. In addi-

tion, because the model structure is not restricted by the

underlying biological mechanisms, the data-driven

approach can be used across different processes, and

the resulting models are relatively easy to adapt for

various process conditions, given that considerable effort

is involved in data generation and model validation.

However, since the parameters of data-driven models

usually have no physical significance, this class of models

cannot be used to explain process behavior — a potential

impediment to regulatory approval.

Developing data-driven models is not feasible when the

process in question does not yet exist, or more than likely,

when the process cannot generate enough appropriate

data because of prohibitive cost and/or effort.

Less-common models such as agent-based models

(ABMs) [31,32] have been developed for bioprocesses.

ABMs employ artificial and autonomous agents to rep-

resent components of the process, with each agent

programmed to follow a set of rules to update its state

and respond to the environment. This approach gives

rise to a realization of the emergent system-level behav-

ior, which may otherwise be analytically intractable

within the traditional explicit equation-based modeling

framework. Used widely in the social sciences, agent-

based modeling is still relatively new to molecular sys-

tems biology [33].

While not as easily amenable to theoretical analyses as

mechanistic models, ABMs are nevertheless useful for

systems whose components naturally admit of represen-

tation as ‘agents’. For instance, the process of glycosyla-

tion could potentially benefit from this approach because

glycans, enzymes, and nucleotide sugar donors can all be

represented naturally as dynamic agents. The ABM

framework therefore offers an intuitive, low-parameteri-

zation, and readily adaptive modeling alternative to the

current first-principle continuum reaction kinetics

approach, for modeling the non-continuum phenomenon

of low number reactions taking place in spatially con-

fined regions of the Golgi apparatus. What is lost in the

generality and analytical insight accruing from first-prin-

ciple models may be more than compensated for by the

more accurate and more flexible representation of the

ABM.
Current Opinion in Chemical Engineering 2019, 1:100705
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Future needs

Hybrid modeling. Data-based models have the twin

advantage of convenience and versatility demonstrated

in other applications outside of bioprocessing, but are

not useful for mechanistic understanding. Mechanistic

models excel in providing mechanistic insight, but are

structurally inflexible. Such complementarity argues for

a hybrid approach to model development, which

involves a judicious combination of mechanistic knowl-

edge and data, offering the potential to use one

approach to compensate for the weakness of the other.

The primary challenge is knowing how best to combine

the two approaches appropriately for any specific appli-

cation, but hybrid modeling of bioprecesses is emerging

and will likely fill an appropriate modeling space in

industrial applications in the near future. Different

applications of this approach in practice may be found

in [28,29�,30�].

Design of experiments. Developing any useful bioprocess

model requires high-quality, information-rich data. Sta-

tistical design of experiments (DoE) methods help to

avoid investing significant time and effort into the per-

formance of bioprocess experiments only to generate data

sets that are not very informative. The efficiency with

which information-rich data sets are generated and ana-

lyzed have made DoE methods popular in many scientific

endeavors. Of particular interest are optimal experimental
designs (OEDs) whose explicit objective is to specify

experimental conditions required to generate data that

will minimize (or maximize) some desired quantity of

interest, such as the precision of the process parameter

estimates. These techniques are still emerging as useful

tools in the biopharmaceutical industry [27].

Multiscale modeling. Another area with potential for

strong impact in the future is efficient multiscale model-

ing [14]. Bioprocesses naturally involve subprocesses

occurring at multiple time- and length-scales. At the

macro-scale are the activities occurring in the bioreactor,

manifested as changes in such bulk reactor characeristics

as nutrient concentrations and cell density. These can be

represented quite well by assuming that the bioreactor

content is well-mixed. The metabolic activities taking

place within the cell occur at a length scale much smaller

than that within the bulk of the bioreactor. At a still

smaller scale are the enzymatic glycosylation reactions

taking place within the Golgi apparatus, an organelle

within the cell. Consequently, a model that purports to

capture important details of the activities in a bioreactor

must involve a micro-scale model of the Golgi apparatus

combined with a meso-scale model of cell metabolism,

connected to a macro-scale model of the bioreactor bulk.

Furthermore, regardless of length scale, some reactions

occur at a much faster rate than others, so that such

models must also represent at least two time-scales: slow

and fast.
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Such high-fidelity multiscale models are useful for creat-

ing bioprocess surrogates (digital twins) for technology

transfer from bench to production. However, capturing

dynamics at every possible scale makes the resulting

model potentially too complex and unwieldy. The chal-

lenge of developing computationally tractable, high-fidel-

ity multi-scale models will need to be met effectively

before such models can become fully accepted.

Automated model generation. What if there exists a

means by which one can automate bioprocess model

generation? If achievable, this could greatly facilitate

bioprocess development in general. An automated model

generation system will significantly lower — if not

completely eliminate — the most daunting barrier to

widespread use of models in the biopharmaceutical

industry: the amount of time, effort, and resources —

financial and human — required to build, validate, and

deploy bioprocess models. While such a system does not

currently exist, some desirable component modes would

include:

� Automated model selection: from a library of model tem-

plates, based on user-specified criteria, which may

include the intended use of the model, the nature of

available process information, etc.

� Automated data generation: from appropriate (optimal)

experimental design, and also performing the experi-

ments (via robotics?), collecting the data, and incorpo-

rating the results into the model, automatically.
� Data pre-processing: to remove outliers, impute missing

values, smooth noisy signals, and reduce the

dimensionality of the data.

� Symbolic Regression (or similar techniques): to obtain

appropriate parameters fit to data, given a class of

potential models with corresponding ‘built-in’ mathe-

matical expressions.

With on-going rapid development of artificial intelligence

(AI) technology, such a dream might become reality

sooner rather than later [34,35].

Estimation
What and why

The term ‘estimation’ (or state estimation) in this context

means specifically the inference of the complete set of

process state variables based on available measurements.

Many bioprocess variables are either not available for

measurement at all, or can only be measured infre-

quently, through off-line laboratory analyses. For exam-

ple, in the manufacture of mAbs, biomass, and such

product quality attributes as glycan distribution, can only

be determined off-line. Yet, these unmeasured variables

are often the attributes upon which the acceptability of

the manufactured product in end-use is based.
www.sciencedirect.com
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While we may not be able to measure all process variables

of interest directly and as frequently as desired, estimat-

ing their values accurately is critical to safe, effective, and

economical bioprocess operation. In the context of mAb

manufacturing, the fundamental premise of state estima-

tion may be understood as follows:

The final product attributes of a mAb, which are

being determined during the manufacturing pro-

cess, and which can only be measured at run end,

depend on affiliated variables (nutrient concentra-

tions, dissolved oxygen (DO) level, etc.), which can
be measured on-line; these latter variables therefore

encode information about the unmeasured, but

critical to quality variables, if only we knew how to
‘extract’ such information.

State estimation is the technique for inferring the values

of these critical, but unmeasured quantities using avail-

able measurements.

Current status

On-line measurement acquisition for off-line measurable
quantities. Protein and metabolite concentrations, bio-

mass, and product quality attributes in mAb manufactur-

ing are currently determined via off-line analysis of

infrequent bioprocess samples, using such analytical tech-

niques as liquid chromatography (LC), mass spectrometry

(MS), capillary electrophoresis, etc. While such measure-

ments, which are relatively accurate and precise, are

appropriate for statistical analysis and model develop-

ment, low sampling frequency, long turnaround time, and

high operating costs, make them unsuitable for feedback

control. The loss of material due to sampling constitutes

yet another disadvantage of these off-line measurement

techniques.

The only bioprocess measurements that are routinely

available on-line and relatively frequently, are of such

bioreactor conditions as DO, pH, and temperature. With

the advent of process analytical technologies (PATs),

there is now strong motivation for the development of

novel techniques for real time measurement of most

process variables. For instance, Raman spectroscopy,

infrared (IR) spectroscopy, and capacitance probes have

recently been deployed successfully for acquiring cell

culture measurements in real time [36,37]. Glycosylation

site occupancy, a CQA, has also been successfully moni-

tored using in situ Raman spectroscopy [38].

Detecting and characterizing glycans at the molecular

level present far more formidable challenges than mea-

suring aggregate cell culture quantities. Currently, the

most reliable methods for measuring glycan distributions

are still LC-based, MS-based, or a combination of both.

Several attempts have been made to automate glycan
www.sciencedirect.com 
profiling, with acceptable turnaround times. For instance,

an automated robotic platform for purification and analy-

sis of mAbs taken directly from bioreactor was developed

by Doherty et al. [39]. A high-throughput, automated

platform based on LC–MS to monitor multiple glycan

attributes was developed by Dong et al. [40], and another

for monitoring multiple CQAs by Chi et al. [41]. Lectin

microarrays are emerging as a potential alternative to the

LC-MS-based techniques. These lectin-based sensors

can measure the glycan concentrations directly without

having to digest the proteins or release the glycans, and

have high sensitivity toward glycan variations [42]. How-

ever, the technique is still maturing and has yet to

overcome such limitations as a low specificity and the

need for human intervention because it is currently not

automated [43].

Estimating unmeasurable quantities. Determining rea-

sonable estimates for currently unmeasurable bioprocess

variables requires the use of so-called soft sensors, con-

sisting of mathematical models constructed for the

express purpose of inferring the unmeasured values

using available measurements generated by analytical

devices (i.e. ‘hard’ sensors). The approach’s premise is

that the unmeasured variables are connected to the

measured ones according to some known — and

‘invertible’ — mathematical relationships, so that the

unknown quantities can be solved for in terms of the

known quantities.

Soft sensors, which can take a variety of forms, have been

used successfully in chemical manufacturing for decades,

ranging from relatively simple static ‘calibration equa-

tions’ to dynamic state estimators using Kalman filter [44–

47]. Not so for bioprocesses. The use of soft sensors for

estimating unmeasured states in cell cultures or CQAs

remains rare (See, for example, [48,49�]; and for a com-

prehensive review of Kalman filter applications in micro-

bial processes, see [50].).

Future needs

The lack of high-precision, real-time sensors for produc-

tivity and product quality attributes argues for the devel-

opment of novel sensors capable of measuring these

quantities efficiently and at desired frequencies.

Because of the complexity of the attributes in question, it

may be necessary to deploy not a single sensor for each

attribute, but an array of sensors that will produce inter-

mediate information, requiring further processing to infer

the values of the individual attributes. The design of such

sensor arrays (what types of sensors; how many of each;

how and where to deploy them geographically around the

process, etc.) along with the associated inference algo-

rithms, will require innovations in process analytical

fundamentals, hardware, and software.
Current Opinion in Chemical Engineering 2019, 1:100705
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In light of the numerous challenges yet to be overcome in

developing robust glycan sensors, in the meantime, it may

be useful to consider the design of soft sensors that can

estimate glycan distributions using mathematical models.

Control
What and why

From one perspective, controlling bioprocesses is similar

to controlling chemical, mechanical, or any other type of

process where a control objective is achieved by manipu-

lating appropriate process inputs. Most biopharmaceuti-

cal processes are fed-batch processes, not continuous.

With no steady state around which to control the process,

and with process conditions changing dynamically and

nonlinearly from the beginning of the run until the end

10–15 days later, controlling a bioprocess shares some

common features with controlling batch or semi-batch

chemical processes, and is similarly more challenging

than controlling continuous chemical processes.

From another perspective, however, bioprocess control

has its own distinctive features and unique challenges —

with a defining characteristic being that the actual

manufacturing ‘unit’ in a bioprocess is not the bioreactor;

it is the cell, a living entity with its own complex opera-

tional objectives and its own internal regulatory mecha-

nisms. The implications are enormous. For example,

unlike in the more familiar case of chemical process

control, the living manufacturing units in a bioprocess

are numerous, heterogeneous, and distributed throughout

the bioreactor; more importantly, the micro-scale subpro-

cesses within each cellular unit cannot be controlled

directly with the manipulated variables available to the

bioreactor operator at the macro scale. Furthermore,

violating important operational constraints can be cata-

strophic for the living cell.

Effective control of bioprocesses is important for many

reasons. The two most important are:

1. To support cell proliferation and productivity, the

necessary nutrient levels and stable bioreactor condi-

tions, must be maintained. With cells consuming

nutrients, producing metabolites, and with the pH/

DO/osmolality of culture media changing constantly,

this objective can only be achieved through active and

effective automatic process control. Manual control is

ineffective and inefficient.

2. Demonstrating a robust process capable of

manufacturing products that meet strict quality stan-

dards repeatably and predictably, is a regulatory require-

ment — necessitating effective process control.

Current status

Current approaches to bioprocess control fall into four

broad categories:
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1. regulatory control of base bioreactor conditions;

2. regulatory control of nutrient and metabolite

concentrations;

3. open-loop, model-based control of product attributes;

and

4. closed-loop, model-based control of product attributes.

In the first category, the primary control objective is to

maintain pH, DO, temperature, and stirring speed at

prespecified setpoints, by manipulating the mass flow

rates through the pumps, heater power, and motor power.

While such base-level regulatory control is critical to the

success of a run, its implementation technology is mature

and not unique to bioprocesses; it needs no further

discussion.

The objective in the second category is to induce and

maintain certain metabolic behavior in cells (e.g. inhibit-

ing lactate production) by maintaining nutrients or

metabolites constant at prespecified levels. An increasing

body of work on PID control of nutrient and metabolite

levels uses Raman probes to measure glucose, lactate,

ammonia, CO2, cell density, and viability, generating

readings multiple times per hour (without manual sam-

pling), which are then used for feedback control. In [51],

the glucose level in a culture medium was controlled

using a proportional controller, while in [52�], the glucose

and the lactate levels were controlled simultaneously using

two PI controllers; likewise in [53], where the glucose and

amino levels were controlled. In contrast to conventional

bolus feeding strategies, these examples show that con-

trolled and continuous supplementation of feed media

can reduce fluctuations in nutrient and metabolite con-

centrations, with positive effects on the final product

characteristics.

In the third category, the few recent attempts at model-

based control of product attributes are considered ‘open-

loop’ control because the manipulated variables were not

adjusted in automatic feedback mode. Instead, the opti-

mal control action sequence was determined before run-

ning the bioprocess and implemented verbatim during

process operation without feedback. For example, in [55],

to reduce batch-to-batch variability, the final biomass of a

recombinant protein was controlled by implementing

control action computed à-priori using a dynamic biopro-

cess model.

In [56�], a dynamic glycosylation model was used to

optimize the feed rates and nutrient concentrations to

increase the galactosylation level of a mAb product. More

recently, in [57], multiple glycosylation attributes were

optimized simultaneously using a multiscale glycosyla-

tion model. These examples of open-loop control repre-

sent a first step toward fully automated model-based

feedback control of productivity and CQAs in mAb
www.sciencedirect.com
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production. However, the absence of feedback means

that any effect of plant/model mismatch or process dis-

turbances cannot be compensated for during process

operation.

Applications in the fourth control category are currently

few in number. In [54], model predictive control (MPC)

was used for maintaining minimal nutrient concentrations

during the exponential growth phase of the cell culture as

this was deemed to be crucial in reducing the lactate and

ammonia concentrations. In [59], MPC was used to con-

trol the fraction of high-mannose antibodies produced in a

perfusion cell culture, with the MPC algorithm using

measurements from daily samples to determine the

appropriate amount of mannose supplement to be added

into the culture medium. More recently, in [60�], MPC

was also used to control lactate concentration of a cell

culture in a fed-batch bioreactor. An auto-regressive

model was used to represent the process dynamics, with

pH and the nutrient feed rate, the exogenous inputs,

updated daily based on lactate measurements. While

these examples represent commendable achievements

in closed-loop, model-based control of mammalian cell

culture processes, only a single attribute was controlled in

each case.

Future needs

A closed-loop, model-based, multi-attribute bioprocess

control system does not currently exist. To meet industry

needs, at a minimum, such a system should have the

following capabilities

1. real-time monitoring of bioreactor conditions, nutrient

levels, and various product attributes, using fast-turn-

around analytical methods and/or soft sensors;

2. reliable dynamic predictions of process output vari-

ables; and based on these,

3. dynamic, optimal adjustment of process inputs to meet

control objectives.

All indications are that MPC, appropriately tailored to the

peculiar characteristics of bioprocesses, offers the best

option. However, despite its wide adoption across a broad

spectrum of other manufacturing applications, MPC is yet

to penetrate biomanufacturing broadly. Until the afore-

mentioned modeling and estimation challenges are

resolved effectively, the current status of limited MPC

applications in biomanufacturing is unlikely to change.

Another future need is the seamless integration of control

software with bioreactor hardware. Currently, multiple

communication protocols are available for different

equipment, posing a major challenge for a seamless

integrating with the software on which mathematical

models and control algorithms are developed [61]. Open

Platform Communications (OPC), a manufacturer-
www.sciencedirect.com 
agnostic series of universal communication protocols,

offers a potential solution to this problem. It features

easy connectivity between devices and continues to

receive wide acceptance from both hardware and software

vendors. Several recent studies report the use of OPC for

data acquisition and control [51,52�].

Conclusions
In manufacturing therapeutic mAbs and other biologics, it

is crucial but challenging to achieve desired productivity

and product quality precisely, efficiently, and consis-

tently. It is our opinion that a PSE-based approach,

comprising three components, process modeling, estima-

tion, and control, can address (and already is addressing)

many of the major challenges faced by the biopharma-

ceutical industry. We argue for a hybrid approach to

modeling, which involves employing a judicious combi-

nation of mechanistic knowledge and data for model

development. Novel sensors capable of measuring the

bioprocess quantities of interest, efficiently and at desired

frequencies are needed, along with model-based soft

sensors to infer whatever unmeasurable quantities

remain.

There is much promising progress being made in process

modeling, estimation, and control, which, collectively, are

building toward the ultimate objective of routine imple-

mentation of fully automated systems for optimal biopro-

cess operations (as is currently the case with the chemical

manufacturing industry). There are also formidable chal-

lenges yet to overcome.
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