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a b s t r a c t

The increasing inequality in income and wealth in recent years, and the associated exces-
sive pay packages of CEOs in the US and elsewhere, is of growing concern among policy
makers as well as the common person. However, there seems to be no satisfactory answer,
in conventional economic theories and models, to the fundamental questions of what kind
of income distribution we ought to see, at least under ideal conditions, in a free market en-
vironment, and whether this distribution is fair. We propose a novel microeconomic game
theoretic framework that addresses these questions and proves that the lognormal dis-
tribution is the fairest inequality of pay in an organization comprising of homogeneous
agents, under ideal free market conditions at equilibrium. We also show that for a popula-
tion of two different classes of agents, the equilibrium distribution is a combination of two
different lognormal distributions where one of them, corresponding to the top ∼3–5% of
the population, can be misidentified as a Pareto distribution. We compare our predictions
with empirical data on global income inequality trends provided by Piketty and others.
Our analysis suggests that the Scandinavian countries, and to a lesser extent Switzerland,
Netherlands and Australia, have managed to get close to the ideal distribution for the bot-
tom ∼99% of the population, while the US and UK remain less fair at the other extreme.
Other European countries such as France and Germany, and Japan and Canada, are in the
middle. Our theory also shows the deep and direct connection between potential game the-
ory and statistical mechanics through entropy, which we identify as a measure of fairness
in a distribution. This leads us to propose the fair market hypothesis, that the self-organizing
dynamics of the ideal free market, i.e., Adam Smith’s ‘‘invisible hand’’, not only promotes
efficiency but also maximizes fairness under the given constraints.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, there has been growing concern over the widening inequality in income and wealth distributions in the
US and elsewhere [1–5]. The statistics are troubling — for instance, as of 2012, the top 1% of households in the US owned
41.8% of all privately held wealth [6], and it had risen from a low of about 20% in 1976 [7].

An important source of the wealth inequality is a similar trend in the income and pay (or wage) distributions. Income
remains highly concentrated, with the top 1% of income earners received 17.9% of all income in 2012 in the US, and that
is up from 12.8% in 1982 [7,8]. A related trend of equally great concern is the excessive pay packages for CEOs which are
reflected in the extraordinarily high CEO pay ratios, particularly in the US [9,10]. There is much discussion both in academic
literature and popular press about what all these mean, what the consequences are, and what can or should be done about
it [1–5,11–16].

Obviously, before policy actions, if any, are taken to address these challenges, we need to understand more deeply why
and how such inequalities occur. Since different people have different abilities and therefore make different contributions in
a society, naturally, we do expect people to be compensated unequally, commensurate with their contributions. Hence, we
would expect to see unequal distributions in income and in wealth. So, a certain level of inequality is to be expected. But, at
the risk of sounding oxymoronic,what is the fairest level of inequality? In particular, in an ideal free market environment,what
is the level of inequality we ought to see? This is the question we address in this paper.

While there is extensive empirical literature on income and wealth distributions, and we cite only a sample here [3,6,
9,11,12,17–20], there is no satisfactory answer to this question in conventional economic theories and models. Empirical
observations are obviously very important, but it would be quite helpful to complement themwith a theoretical framework
that provides a new useful perspective and analytical insight. From a theoretical perspective, two fundamental questions
one would like answered are: What kind of pay distribution should arise, under ideal conditions, in a free market environment
comprising of utility maximizing employees and profit maximizing companies? Is this distribution fair?

The answers to these questions can serve as a fundamental benchmark against which we can evaluate the distributions
seen in real life. In the absence of such a reference framework, the conclusionswe reach by relying on empirical observations
alone are likely to be incomplete, in an important manner. This benchmark can help us measure and better understand the
deviations caused by nonidealities in the real world, and to develop appropriate policy frameworks and incentive structures
to try to correct the inequalities. It can give us a quantitative basis for understanding and developing rational tax policies,
pay packages for executives, and so on. Our objective in this paper is to develop such a benchmark by proposing a novel
microeconomic framework that predicts and explains the emergence of an appropriate pay distribution under ideal free
market conditions.

When one explores outsidemainstream economics in search of answers to these questions, one finds that there has been
muchwork, in the past decade or so, in the econophysics community to model income andwealth distributions by applying
concepts and techniques from statistical mechanics [20–35]. While these models are quite interesting and instructive,
they have not, however, bridged the rather wide conceptual gulf that exists between economics and econophysics
[36,37], particularly in two crucial areas. One, the typical particle model of agent behavior in econophysics assumes agents
to have nearly ‘‘zero intelligence’’, acting at random, with no intent or purpose. This does not sit well with an extensive
body of economic literature spanning several decades, where one models, in the ideal case, a perfectly rational agent whose
goal is to maximize its utility or profit by acting strategically, not randomly. From the perspective of an economist, it is
quite reasonable to ask ‘‘How can theories and models based on the collective behavior of purpose-free, random, molecules
explain the collective behavior of goal-driven, optimizing, strategizing men and women?’’

Another conceptual stumbling block is the role of entropy in economics. In statistical thermodynamics, equilibrium is
reached when entropy, which is a measure of randomness or uncertainty, is maximized. So, an economist wonders, why
would maximizing randomness or uncertainty be helpful in economic systems? We all know that markets are stable,
and function well, when things are orderly, with less uncertainty, not more. This has led to an uneasy relationship with
entropy in economics, typically ranging from grudging acceptance to outright rejection, as seen from the remarks of two
Nobel Laureates in economics, Amartya Sen and Paul Samuelson. Sen observed [38], while commenting on the Theil Index,
‘‘given the association of doom with entropy in the context of thermodynamics, it may take a little time to get used to
entropy as a good thing (‘How grand, entropy is on the increase!’), but it is clear that Theil’s ingenious measure has
much to be commended. . . .But the fact remains that it is an arbitrary formula, and the average of the logarithms of the
reciprocals of income shares weighted by income shares is not a measure that is exactly overflowing with intuitive sense.
It is, however, interesting that the concept of entropy used in the natural sciences can provide a measure of inequality
that is not immediately dismissible, however arbitrary it may be’’. Similar objections were raised by Samuelson [39]: ‘‘As
will become apparent, I have limited tolerance for the perpetual attempts to fabricate for economics concepts of ‘entropy’
imported from the physical sciences or constructed by analogy to Clausius–Boltzmannmagnitudes’’. Thus, we run intomajor
conceptual hurdles in the typical statisticalmechanics-based approaches to problems in economics, particularly in the study
of income and wealth distributions.

Besides these conceptual challenges, there is also a technical one due to the nature of the datasets in economics. As
Ormerod [37] and Perline [40] discuss, one can easily misinterpret data from lognormal distributions, particularly from
truncated datasets, as inverse power law or other distributions. Therefore, empirical verification of econophysics models is
still in the early stages.
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Fig. 1. Spreading of the pay distribution under competition in an ideal free market environment.

Addressing one of the two conceptual challenges, Venkatasubramanian proposed an information-theoretic frame-
work [41,42] wherein he identified that entropy really is a measure of fairness in a distribution, not just randomness or
uncertainty, which then makes it an appropriate candidate in economics. In this paper, we follow up on this line of inquiry
and address the other critical challenge of reconciling the behavior of goal-driven, teleological, agents with that of purpose-
free, randomly driven molecules. This resolution helps us address the inequality questions we raised above. We first start
from a familiar ground in economics, namely, game theory, to develop a new conceptual microeconomic framework. This
leads to surprising and useful insights about a deep connection between game theory and statistical mechanics, paving the
way for a general theoretical framework that unifies the dynamics of purposeful animate agents with that of purpose-free
inanimate ones.

2. Pay distribution in an ideal free market environment: formulating the problem

We follow Venkatasubramanian’s [42] approach in formulating the problem and restate it here for the convenience of
the reader. Consider the following gedankenexperiment where we study a competitive, dynamic, free market environment
comprising of a large number of utility maximizing rational agents as employees and profit maximizing rational agents as
corporations. We assume an ideal environment where the market is perfectly competitive, transaction costs are negligible,
and no externalities are present. In this ideal free market, employees are free to switch jobs and move between companies
in search of better utilities. Similarly, companies are free to fire and hire employees in order to maximize their profits. We
do not consider the effect of taxes.

We also assume that a company needs to retain all its employees in order to survive in this competitive market environ-
ment. Thus, a companywill takewhatever steps necessary, allowedby its constraints, to retain all its employees. Similarly, all
employees need a utility to survive and that they will do whatever is necessary, allowed by certain norms, to stay employed.
We assume that neither the companies nor the employees engage in illegal practices such as fraud, collusion, and so on.

In this ideal free market, consider a company A with N employees and a salary budget of M , with an average salary of
Save = M/N . Let us assume that there are n categories of employees — ranging from secretaries to the CEO, contributing
in different ways towards the company’s overall success and value creation. All employees in category i contribute value
Vi, i ∈ {1, 2, . . . , n}, such that V1 < V2 < · · · < Vn. Let the corresponding value at Save be Vave, occurring at category s. Since
all employees are contributing unequally, somemore some less, they all need to be compensated differently, commensurate
with their relative contributions towards the overall value created by the company. Instead, A has an egalitarian policy that
all employees are equal and therefore pays all of them the same salary, Save, irrespective of their contributions. The salary
of the CEO is the same as that of an administrative assistant in the mail room. This salary distribution is a sharp vertical line
at Save, as seen in Fig. 1(a), a Kronecker delta function. As noted, while this may seem fair in a social or moral justice sense
(this distribution has a Gini coefficient of 0, which according to the Gini measure is the fairest outcome, but more about this
later in the paper), clearly it is not in an economic sense. If this were to be the only company in the economic system, or if
A is completely isolated from other companies in the economic environment, the employees will be forced to continue to
work under these conditions as there is no other choice.

However, in an ideal free market system there are other choices. Therefore, all those employees who contribute more
than the average — i.e., those in value categories Vi such that Vi > Vave (e.g., senior engineers, vice presidents, CEO), who
feel that their contributions are not fairly valued and compensated for by A, will therefore be motivated to leave for other
companies where they are offered higher salaries. Hence, in order to survive A will be forced to match the salaries offered
by others to retain these employees, thereby forcing the distribution to spread to the right of Save, as seen in Fig. 1(b).

At the same time, the generous compensation paid to all employees in categories Vi such that Vi < Vave, will motivate
candidates with the relevant skill sets (e.g., low-level administration, sales and marketing staff) from other companies to
compete for these higher paying positions in A. This competition will eventually drive the compensation down for these
overpaid employees forcing the distribution to spread to the left of Save, as seen in Fig. 1(c). Eventually, we will have a
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distribution that is not a delta function, but a broader one where different employees earn different salaries depending on
the values of their contributions as determined by the freemarket. The funds for the higher salaries now paid to the formerly
underpaid employees (i.e., those who satisfy Vi > Vave) come out of the savings resulting from the reduced salaries of the
formerly overpaid group (i.e., those who satisfy Vi < Vave), thereby conserving the total salary budgetM .

Thus, we see that concerns about fairness in pay cause the emergence of a more equitable salary distribution in a free
market environment through its self-organizing, adaptive, evolutionary dynamics and that its spread is closely related to
fairness in relative compensation. The point of this analysis is not tomodel the exact details of the freemarket dynamics but
to show that the notion of fairness plays a central role in driving the emergence and spread of the salary (in general, utility)
distribution through the free market mechanisms.

Even though an individual employee cares only about her utility and no one else’s, the collective actions of all the
employees, combined with the profit maximizing survival actions of all the companies, in an ideal competitive free market
environment of supply and demand for talent, under resource constraints, lead towards a more fairer allocation of pay,
guided by Adam Smith’s ‘‘invisible hand’’ of self-organization.

We have used salary as a proxy for utility in this example to motivate the problem. In general, utility for an employee is a
complicated aggregate that depends on a host of factors, somemeasurable some not. Obviously, pay (i.e., total compensation
including base salary, bonus, options, etc.) is an important component of the utility. Other components include, quantity
and quality of the effort, title and peer recognition, competition and job security, career and personal growth opportunities,
retirement andhealth benefits, company culture andwork environment, job location, and so on, not necessarily in that order.

Given this free market dynamics scenario, three important questions arise: (i) Will this self-organizing dynamics lead
to an equilibrium distribution or will the distribution continually evolve without ever settling down? (ii) If there exists an
equilibrium distribution, what is it? (iii) Is this distribution fair?

Our knowledge of the freemarket dynamics is incomplete, in an importantway, without an answer to these fundamental
questions. This requires a theoretical understanding of the free market dynamics, at a reasonable level of depth, particularly
from the bottom up, agents-based, microeconomic perspective as described above. Given the obvious complexity of this
dynamics, it is unrealistic to expect to develop a theory, and the associated models, that will address all the details and
nuances. Therefore, our goal is to develop an analytical framework that identifies the key concepts and general principles,
models free market dynamics under ideal conditions, and answers these central questions. We propose such a framework
in the following sections.

3. A microeconomic game theoretic framework: ‘‘restless’’ agents model

3.1. Formulating the microeconomic payoff function

We address these questions by developing a potential game theoretic microeconomic framework. Continuing with the
scenario described above, we assume that all employee agents are generally ‘‘dissatisfied’’ in their current positions, due to
aforementioned unfairness considerations. In ourmodel, every employee feels that she is undervalued compared to others in
her peer group. Every employee feels she could be doing better, she should be doing better, given her talents and experience,
in her company or elsewhere. As a result, they all are constantly on the lookout for job opportunities to improve their utilities.
That is, these utility-maximizing, fairness-seeking, teleological agents are always restless, itching to move.

Even though the overall utility for an employee is a complex aggregate of several factors, as noted above, we hypothesize
that, at the minimum, people expect to be compensated fairly for their effort or contribution. They will, of course, accept
more compensation if offered, but at the very least they expect fair compensation. Hence we propose that the overall utility
is largely determined by three dominant elements: (i) utility from salary, (ii) disutility from effort, and (iii) utility from a fair
opportunity for recognition and career advancement. This is the microeconomic foundation on which we build our theory
to predict and explain the emergent macroeconomic consequences in pay distribution in an ideal free market environment.

Thus, the overall utility for an agent is given by:

hi(Si, Ei,Ni) = ui − vi + wi (1)

where hi is the total utility of an employee earning a salary Si by expending an effort Ei, while competing with (Ni −1) other
agents in the same job category i for a fair recognition of one’s contributions. u(·) is the utility derived from salary, v(·) the
disutility from effort, andw(·) is the utility from fairness.

The first two elements are rather straightforward to appreciate, but the third requires some more discussion along the
lines of the scenario described above. The first twomodel the tendency of an employee tomaximize one’s utility from salary
while minimizing the effort put into receiving it. As for the third, consider the following. At any job level, an agent is looking
to improve her utility only in the jobs space that is relevant to her based on her education, experience, and other such
qualifications. That is, a receptionist is not eying the job announcement for a CEO. In that sense, what matters in trying to
improve one’s utility is the local competition at the agent’s level. It is the assessment of one’s relative status in a peer group
that matters, not its absolute value. For instance, a vice president is not necessarily very happy that she is enjoying much
more utility than her receptionist, but is quite unhappy that her peer, another vice president with comparable (or perhaps
even less) skills and contributions, has been better recognized in the organization with awards, better work assignments,
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more perks etc., thereby enjoying a higher utility than her. As far as this ‘‘unhappy’’ agent is concerned, the metric that
matters to her is whether she is one of the chosen few or one of the many in her peer level. Her preference is to be one of the
few and possibly the only one enjoying a lot of utility. This is irrespective of the category one is in. The question is not about
money, but about a fair valuation, recognition and appreciation of one’s abilities and contributions to the organization. These
determine her future career prospects in that organization or elsewhere. This is the utility from having a fair shot at a better
future.

Now, fairness is a relative quantity, and it arises only when compared with another individual or situation. Consider, for
instance, that this employee is eligible for some award. Her chances of winning it goes as 1/Ni, where Ni is the number of
employees in her peer group i, her local competition. Let us further state, to make this line of reasoning clearer, that the
award has a monetary equivalent of Q (even though, money is not central to the recognition here). Therefore, her expected
value for the award is Q/Ni, and the utility derived from it goes as ln(Q/Ni) because of diminishing marginal utility.

This leads to utility derived from fairness in recognition and opportunity as:

wi(Ni) = −γ lnNi. (2)

While it is possible to choose other functions whichmight also capture these properties, we prefer this one for its simplicity
and its general use in economics.

For the utility derived from salary, we employ the commonly used logarithmic utility function:

ui(Si) = α ln Si. (3)

As for the second element, every job has certain disutility associated with it. This comes from a host of factors such as the
investment in education needed to qualify oneself for the job, the experience to be acquired, working hours and schedule,
quality of work, work environment, company culture, relocation anxieties, and so on, which are often difficult, if not
impossible, to quantify in real life. Hence, it is difficult to capture all these in a single effortmetric.While there is considerable
prior work on modeling the disutility of effort when a metric for effort is available [43–47], there is not much when such
a metric is absent. In the absence of such a metric, typically, one compensates for these different uncertain components
of the disutility of a new job by negotiating a salary package that would make it worth the effort. Thus, in practice, one
intuitively uses salary as a proxy to impute and estimate the effort involved, thereby estimating the remuneration required
to compensate for the disutility of effort. Note that by effortwe do not justmean the hours put into performing the job, but all
the prior investment in education and experience to qualify oneself as well as the other adjustments and sacrifices one has
to make in the new position. There is empirical evidence that supports this line of reasoning in the work of Stratton [48] and
Ahituv and Lerman [49] who have demonstrated that effort correlates with ln(Salary). Combining this with the commonly
used quadratic disutility from effort [44–47,50–54], we propose the following form for the second element:

vi(Ei) = β(ln Si)2. (4)

Our formulation is also consistent with the conditions imposed on effort E as a function of salary, E(S). According to
Katz [55] and Akerlof and Yellen [56], E(S) should satisfy the following conditions:

dE/dS > 0, E(0) ≤ 0, and S/E × (dE/dS) is decreasing. (5)

Our effort function E(S) = ln S satisfies all three conditions:

1. dE/dS = 1/S > 0
2. E(0) = −∞ < 0
3. S/E × (dE/dS) = (S/ ln S)× (1/S) = 1/ ln S is decreasing.

Intuitively, one can combine u and v to compute unet = au−bv (a and b are positive constant parameters)which is the net
benefit derived from a job after accounting for its cost. Typically, net benefit will keep increasing as u increases (because of
salary increases, for example). However, generally, after a point, the cost has gone up somuch because of personal sacrifices
such as working overtime, missing quality time with family, giving up on hobbies, job stress resulting in poor mental and
physical health, etc., unet begins to decrease after reaching a maximum. Hence, the simplest model of this typical profile is
a quadratic function, as in unet = au − bu2. Since, u ∼ ln(Salary), we get Eq. (4). Therefore, our formulation for effort is a
reasonable one supported by empirical evidence as well as by intuitive and theoretical expectations.

Combining all three, we have

hi(Si, Ei,Ni) = α ln Si − β(ln Si)2 − γ lnNi (6)

where α, β, γ > 0.
In general, α, β and γ , which model the relative importance an agent assigns to these three elements, can vary from

agent to agent. However, we first examine the simple and ideal situation where all agents have the same preferences and
hence treat these as constant parameters. (In Section 3.4.2 we relax this requirement and consider other cases.) As noted,
presumably, there are other expressions one could use to model these three elements, but the choices we have made have
interesting properties, revealing important insights and connections as we shall see shortly.

In order to move to a job with better utility, an agent needs job offers. So, the employee agents constantly gather
information and scout the market, and their own companies, for job openings that are commensurate with their skill sets,
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experiences and career and personal goals. Similarly, the company agents (through their human resources department, for
example) also conduct similar searches looking for opportunities to fire and hire employees so that their profits may be
improved.

At any given time, an employee agent is faced with one of five job options: (i) no new job offer is available, (ii) new offer
has the same utility as the current one, (iii) new offer has less utility than the current one, (iv) new offer has more utility, or
(v) is let go from the current job (i.e., zero utility). The agent’s best strategies for the five options are: for (i), (ii) and (iii), the
agent stays put in the current position at the current utility, for (iv) accept the new offer, and (v) leave the company and
look for a new position. Each agent’s strategy is independent of what the other agents are doing.

We are now ready to answer the first question.

3.2. Is there an equilibrium distribution?

In a potential game framework, payoff is the gradient of potential φ(x), i.e.,

hi(x) ≡ ∂φ(x)/∂xi (7)

where xi = Ni/N and x is the population vector. Therefore, by integration (we replace partial derivative with total derivative
because hi(x) can be reduced to hi(xi) expressed in Eqs. (1)–(4)),

φ(x) =

n
i=1


hi(x)dxi (8)

We observe that the game under consideration is a potential game with the potential function:

φ(x) = φu + φv + φw + constant (9)

where

φu = α

n
i=1

xi ln Si (10)

φv = −β

n
i=1

xi(ln Si)2 (11)

φw =
γ

N
ln

N!

n
i=1
(Nxi)!

(12)

where we have used Stirling’s approximation in Eq. (12).
We can show that φ(x) is strictly concave:

∂2φ(x)/∂x2i = −γ /xi < 0. (13)

Therefore, a unique Nash equilibrium for this game exists, where φ(x) is maximized, as per the well-known theorem
[57, p. 60].

It is important to note that this is a stable equilibrium as long as the evolutionary dynamics satisfies positive correlation
(e.g., replicator dynamics, Smith dynamics, best response dynamics, etc.), for the potential is a Lyapunov function under
such condition, with a guarantee of global convergence [57, p. 223].

This answers our first question.

3.3. Connection with statistical mechanics

Readers familiar with statistical mechanics will recognize the potential component φw as entropy (except for themissing
Boltzmann constant k), and that maximizing the payoff potential in game theoretic equilibrium would correspond to
maximizing entropy in statistical mechanical equilibrium, revealing a deep and useful connection between these seemingly
different conceptual frameworks. This connection suggests that one may view the statistical mechanics approach to
molecular behavior, also called statistical thermodynamics, from a potential game perspective. In this approach, one may
view the molecules as restless agents in a game (let us call it the thermodynamic game), continually jumping from one
energy state to another through intermolecular collisions. However, unlike employees who are continually driven to switch
jobs in search of better utilities they desire, molecules are not teleological, i.e., not goal-driven, in their constant search. As
prisoners of Newton’s Laws, constantly subjected to intermolecular collisions, their search and dynamical evolution is the
result of thermal agitation.
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3.4. What is the equilibrium distribution?

This connection to statistical thermodynamics, and the insight that φw is entropy in this context, helps us in answering
the second question: What is the equilibrium distribution?

We first answer this question for the thermodynamic game. Approaching the thermodynamic game from potential game
perspective, we have the following ‘‘utility’’ for molecules in state i:

hi(Ei,Ni) = −βEi − lnNi (14)

where Ei is the energy of a molecule in state i (not to be confused with effort in (4)), β = 1/kT , k = 1.38 × 10−23 JK−1 is
the Boltzmann constant; and T is temperature. By integrating the utility, we can obtain the potential of the thermodynamic
game:

φ(x) = −
β

N
E +

1
N

ln
N!

n
i=1
(Nxi)!

(15)

where E = N
n

i=1 xiEi is the total energy that is conserved.
We use the method of Lagrange multipliers with L as the Lagrangian and λ as the Lagrange multiplier for the constraintn
i=1 xi = 1:

L = φ + λ(1 −

n
i=1

xi). (16)

Solving ∂L/∂xi = 0 and substituting the results back to
n

i=1 xi = 1, we obtain the well-known Gibbs–Boltzmann expo-
nential distribution at equilibrium:

xi =
exp(−βEi)
n

j=1
exp(−βEj)

. (17)

What we just now did is the standard procedure followed in maximum entropy methods in statistical mechanics and infor-
mation theory to identify the distribution that maximizes entropy under the given constraints [58–60]. Once again, readers
familiar with statistical thermodynamics will recognize that from (15), we have:

φ = −
1

NkT
(E − TS) = −

β

N
A (18)

where A is theHelmholtz free energy, S is entropy (not to be confusedwith salary), and T is temperature. Indeed, in statistical
mechanics A is called a thermodynamic potential.

For the teleodynamic game, i.e., the pay distribution game, we carry out the same procedure to maximize φ(x) in
Eqs. (9)–(12) to obtain the following lognormal distribution at equilibrium:

Xi =
1
SiD

exp

−


ln Si −

α+γ

2β

2
γ /β

 (19)

where D = N exp

λ/γ − (α + γ )2/4βγ


and λ is the Lagrange multiplier.

3.4.1. Replicator dynamics
Alternatively, we can approach this question from the replicator dynamics point of view in game theory [57]. In this

approach, an agent revises its strategy based on

ρij ∝ xj[hj − hi]+. (20)

Under this protocol, an agent in the job category i who receives a revision opportunity, i.e., a new job offer in category j,
switches from i to j with probability ρij. Therefore the dynamics becomes:

ẋi ∝ xi


hi −

n
j=1

xjhj


. (21)

The equilibrium is reached (i.e., ẋ = 0) when individual payoff equals the average payoff of the system:

h∗

i =

n
j=1

xjh∗

j = h∗. (22)
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We ignore the trivial solution of xi = 0. Substituting this equation back in our utility function (Eq. (1)), we solve to find the
equilibrium distribution to be

Xi =
1
SiD

exp

−


ln Si −

α+γ

2β

2
γ /β

 (23)

where D = N exp

h∗/γ − (α + γ )2/4βγ


. This result agrees with (19). The equilibrium average payoff is therefore

h∗
= γ ln Z − γ lnN (24)

where Z =
n

j=1 exp{[α ln Sj − β(ln Sj)2]/γ } resembles the partition function seen in statistical mechanics.
This result is also in agreement with what Venkatasubramanian [41,42] derived using an information theoretic

framework. In that approach, the constraints are determined by information typically known about the distribution a priori.
They are: (i) total number of employees N , (ii) total amount of moneyM budgeted to pay all these employees, (iii) minimum
salary, Smin, received by the lowest paid employee, often fixed by theminimumwage law or a reservation wage, and (iv) the
maximum salary, Smax, cannot exceed M . As Venkatasubramanian has shown, maximizing entropy under these constraints
leads to a lognormal distribution at equilibrium given by:

f (S;µ, σ) =
1

Sσ
√
2π

exp

−
(ln S − µ)2

2σ 2


(25)

where µ = ln(M/N)− σ 2/2; σ = (lnM − ln Smin)/2a; and a is a parameter chosen using the Chebyshev inequality given
by:

Prob(−aσ < X − µ < aσ) ≥ 1 −
1
a2

(26)

to the level of confidence desired in the estimate for σ (e.g. for a = 10, P ≥ 0.99). Eq. (25) is the same as (19) or (23) with
the following identities:

µ =
α + γ

2β

σ =


γ

2β

1/2

.

(27)

For the thermodynamic game, it is easy to show from Eqs. (20) through (22), and (14), a similar replicator dynamics
analysis produces the same Gibbs–Boltzmann exponential distribution in (17) at equilibrium.

Thus, we see that, intuitively, maximizing the game theoretic potential (Eq. (9) or (15)) is the same as maximizing
entropy subject to the constraints. In the statistical mechanical or information theoretic formulations, these constraints
are separately imposed on entropy whereas in the game theoretic formulation (Eq. (9) or (15)) the constraints are already
embedded in the equation (the only additional constraint imposed is the total number of agents, N). Therefore, the resulting
Lagrangian (e.g., Eq. (16)) is the same, thereby leading to the same distribution. These demonstrate the internal consistency
among the three different approaches, namely, potential game theory, replicator dynamics, and statistical mechanics, which
is reassuring.

3.4.2. A bi-population game
Our model with a homogeneous population of agents with the same payoff preferences describes a 1-class system (i.e., a

class-less organization or society), a model of an ideal, utopian, organization or society. This utopian system recognizes the
dignity of labor, and that every agent is important, making a valuable contribution. The other extreme would be one where
different agents have different payoff preferences, i.e., different α, β , and γ values. However, reality is typically somewhere
in between, with Π different classes of agents, with all the agents in the same class having the same α, β , and γ values.
For instance, employees in an organization, or in a society at large, are often grouped into three broad classes — e.g., [‘‘blue
collar’’, ‘‘white collar’’, c-suite executives or owners] or [lower, middle and upper class]. Such coarse-grained classification is
often appropriate, even necessary sometimes, to elicit and discern macroscopic trends in a population. With that in mind,
we now present the analysis for a 2-class (i.e., bi-population) system containing two classes of agents each with a distinct
set of α, β , and γ values. We then show how this can be generalized toΠ-class systems.

The utility of an agent in a 2-class system at salary level i is therefore defined as

hi,j = αj ln Si − βj(ln Si)2 − γj ln(Ni,1 + Ni,2) (28)

where the choice of j ∈ {1, 2} indicates either Class 1 population or Class 2 population.
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The equilibrium replicator dynamics is also modified:
h∗

i,j = h∗

j ∀i ∈ Ωj
hk,j < h∗

j ∀k ∉ Ωj
(29)

whereΩj = {k|x∗

k,j > 0} denotes the collection of levels with class j’s presence. The first condition is identical to the homo-
geneous scenario. The second indicates the possibility that some levels are only occupied by a single class (i.e., the utility is
too low for the other class).

We can prove thatΩ1 ∪Ω2 = {k|1 ≤ k ≤ n} andΩ1 ∩Ω2 = ∅, i.e., every salary level contains some population but not
both. First, suppose there are empty salary levels. They will soon be occupied because of the infinitely high utilities. ThusΩ1

andΩ2 cover the whole domain. Second, suppose there is an overlap where Ω̂ = Ω1 ∩Ω2. Let the equilibrium population
density be x∗. Eq. (29) can be rewritten as:

h∗

j = αj ln Si − βj(ln Si)2 − γj lnNx∗
∀i ∈ Ω̂. (30)

Thus

lim
∆S→0

∆x∗

∆Si
=

dx∗

dS
=
αj − 2βj ln S

γjS
x∗. (31)

This indicates two distinct gradients for every point in Ω̂ . Therefore we will not see an overlapping region with mixed
populations.

We can also prove that the equilibrium density curve is continuous at the interface of two populations. Suppose
otherwise, at the interface S = Ŝ,

x∗

1(Ŝ) ≠ x∗

2(Ŝ) (32)

according to Eq. (29) again,

αj ln Ŝ − βj(ln Ŝ)2 − γj ln x∗

j ≥ αj ln Ŝ − βj(ln Ŝ)2 − γj ln x∗

−j (33)

i.e.,

x∗

j ≥ x∗

−j. (34)

The only possible solution is x∗

1 = x∗

2 therefore the population density is continuous at the interface.
Even though we now know these equilibrium characteristics of a bi-population game, an exact equilibrium density is

still tedious to obtain unlessΩ1 andΩ2 are given:

xi =
N1/N
SiD1

exp

−


ln Si −

α1+γ1
2β1

2
γ1/β1

1(i ∈ Ω1)+
N2/N
SiD2

exp

−


ln Si −

α2+γ2
2β2

2
γ2/β2

1(i ∈ Ω2) (35)

whereDj is thenormalization that ensures
n

i=1 xi = 1.We can, however, get a good approximationwhen the two lognormal
curves of Class 1 and Class 2 are sufficiently separated such that the overlap is insignificant. The overall distribution is then
estimated as a mixture of two lognormal distributions:

Xi ≈
N1

SiD
exp

−


ln Si −

α1+γ1
2β1

2
γ1/β1

+
N2

SiD
exp

−


ln Si −

α2+γ2
2β2

2
γ2/β2

 (36)

where Nj denotes the number of class j agents and D denotes the normalization parameter which is easily computed.
To test the model predictions, we ran an agent-based simulation comprising of one million agents in two classes, at 100

salary levels, with a minimum pay of $20,000 (using a minimum wage of $10/hr and 2000 h/year) and a maximum pay of
$3,000,000. We explored the typical case of 95% of the population in Class 1 and 5% in Class 2. The respective α, β , and γ
values for the two classes are shown in Table 1. The dynamics unfolds by having each agent trying to maximize its utility
given by (6) by switching from its current job to a better one and the equilibrium (stationary) distribution emerges over
time, as shown in Figs. 2 and 3. In Fig. 2, the blue (Class 1) and yellow (Class 2) histogram bars are data from the simulation
and the lines are predictions by the model. As the results show, the two populations are sufficiently separated and hence
the individual lognormal distributions predicted by the model (Eq. (36)) fit the data very well. For the population shown
in yellow (Class 2), its higher α makes it value the utility from salary more, lower β motivates it to put in more effort, and
higher γ makes the utility from fairness more important, compared to the Class 1 agents. As a result, Class 2 agents are
averse to jobs with lower pay. It is the opposite for the agents from Class 1. We observe that the combined distribution
(solid red line), as one might expect, fits the lognormal distribution for the blue population (Class 1) quite well in the lower
and medium salary ranges but deviates from it for higher salaries.
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Table 1
2-class system parameters.

j αj βj γj

1 93.4 3.87 2.17
2 95.8 3.67 4.34

Fig. 2. Simulation results.

Fig. 3. Fitted power law.

We also show that the distribution of the higher salaries (largely occupied by the yellow population agents) can be fitted
to an inverse power law, given as follows:

xi ∝ S−(1+η)
i (37)

1. Top 3% fitted: η = 1.60, r2 = 0.99
2. Top 5% fitted: η = 1.70, r2 = 0.96.

We see that the inverse power law fit is very good for both top 3% and 5%. The Pareto exponents from our simulation data
agree well with empirical data reported in the literature — between 1 and 2, but typically around 1.5 for the top 3% [33].
Thus, the main lesson here is that while the overall distribution is a combination of two lognormal distributions, it can be
quite easily misidentified as a lognormal for the majority and an inverse power law or Pareto distribution for the minority
at the top end of the salaries. This again confirms similar warnings by Perline [40] and Mitzenmacher [61]. For actual salary
distributions reported in the literature [33], the available data is not good enough to sort this out clearly and further studies
are needed.
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Our 2-class approach can be generalized for aΠ-class game along the lines we described above. However, as noted, we
suggest that we might need only three classes, at most four, to model empirical data effectively. At any rate, at the present
time, the empirical data reported in the literature is not good enough to test 3-class or 4-classmodels. The best it seems to be
able to do is to identify the need for a 2-class model, but even there it appears unable to discriminate between a lognormal
distribution and a power law fit for the top 3%–5% as we showed above.

An interesting question one might ask is ‘‘Why does the 2-class split in actual data occur at about 95%–97% of the
population? Why not at 80%, for instance?’’ In our theory, this is related to the fraction of the population that is highly
motivated, talented, and driven towards individual accomplishments and success (i.e., Class 2). It would be nice if we had
demographic data that directly showed where this 2-class split occurs in the real world, but we do not. One approximation
we can perhaps use to estimate how human abilities are distributed in a population is how IQ is distributed in a population.
Obviously, as we all know, IQ does not capture the complete picture of the human talent spectrum and how people succeed.
Nevertheless, it is interesting to note that 2-σ deviation (IQ = ∼130) from the median IQ value occurs at ∼97% of the
population — i.e., the top ∼3% of the population have an IQ greater than ∼130, beyond the 2-σ deviation.

3.5. Is the equilibrium distribution fair?

The fairness question is a challenging one as the term fairness is frequently used quite broadly and can mean different
notions in different contexts, as can be seen from the extensive literature on this subject (we cite here only a few selected
papers [62–66,38,67] as a representative sample). This is one of the reasons the term is often usedwithin quotes, as in ‘‘fair’’.
As we saw in Section 2, fairness based on moral principles would require us to recognize all human beings as equals, but
does this imply that everyone should receive equal pay irrespective of their contributions in an organization? Our sense of
economic fairnesswould disagree. Our intuitive sense of fairness in pay suggests that one’s reward should be commensurate
with the value of one’s contribution.

Even within the economic context, there are a variety of measures of fairness in use. For instance, given an unequal
distribution of pay among employees in an organization, some commonly usedmeasures aremaximin fairness, proportional
fairness, Gini coefficient, Theil index and so on [41,42]. For most fairness measures, the implementation of fairness in a
system requires a central authority to care about the weakest agent(s) in the system and promote fairness by enforcing a
fairness policy utilizing the chosen measure. For example, in the Rawlsian framework, the state, which acts as the central
authority, is needed to promote fairness by enforcing the maximin measure based fairness policy. However, in an ideal
free market environment there is no such central authority. Each economic agent is interested in maximizing only his or
her utility or profit and does not care about anyone else’s. So, does such a free market environment care about fairness in
pay distribution? As we showed, the answer is yes. The ideal free market does promote fairness, as an emergent property
resulting from the self-organizing dynamics of the market environment.

As we showed, the deep connection between game theory and statistical mechanics, andwith information theory, occurs
via entropy, a concept that is often misunderstood and much maligned [41,42,39,38]. In the past, there have been several
attempts to find a suitable interpretation of entropy for economic systems without much success [68–70,39]. In these
attempts, one typically wrote down equations in economics that mimicked expressions in thermodynamics for entropy,
energy, temperature, etc. — but no identification of entropy in terms of meaningful economic concepts was made. Just as
entropy is a measure of disorder in thermodynamics and uncertainty in information theory, what does entropy mean in
economics? Neither interpretation, disorder or uncertainty, makes much sense in the economic context. Economic systems
work best when they have orderly markets. Why then would anyone want to maximize disorder? Similarly, economic
systems work best when there is less uncertainty. Why then would anyone want to maximize uncertainty? The inability to
resolve this crucial issue has been a major conceptual roadblock for decades thwarting meaningful progress, as evidenced
from Amartya Sen’s remarks about the Theil index [38] or Paul Samuelson’s objections to entropy in economics [39].

The crucial insight here is the recognition that entropy is a measure of fairness in a distribution, an insight that has
not been explicitly recognized and particularly stressed in prior work in statistical thermodynamics, information theory,
or economics [42]. Despite the several attempts in the past, entropy has played, by and large, only a marginal role in
economics, even that with strong objections from leading practitioners. Its pivotal role in economics and in free market
dynamics has never been recognized. This is mainly because entropy’s essence as fairness appears as different facets in
different contexts [42]. In thermodynamics, being fair to all accessible phase space cells at equilibrium under the given
constraints — i.e., assigning equal probabilities to all the allowedmicrostates — projects entropy as ameasure of randomness
or disorder [71]. This is the appropriate interpretation in this particular context, but it obscures the essential meaning of
entropy as a measure of fairness. In information theory, being fair to all messages that could potentially be transmitted
in a communication channel — i.e., assigning equal probabilities to all the messages — shows entropy as a measure of
uncertainty [58,59]. Again, while this is the appropriate interpretation for this application, this, too, conceals the real nature
of entropy. In the design of teleological systems, being fair to all potential operating environments, entropy emerges as a
measure of robustness i.e., maximizing system safety or minimizing risk [72]. Once again, this is the right interpretation for
this domain, but this also hides its true meaning.

Thus, the common theme across all these different contexts is the essence of entropy as a measure of fairness, which
stems from the notion of equality expressedmathematically. Principles of equality and proportionality are the foundations of
our sense of fairness — e.g., equal pay for equal work (i.e., contribution) and more pay for more work. If there are N possible
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candidates among whom a resource is to be distributed, and if no particular candidate is to be preferred over another,
then the fairest distribution of the resource is one of equal allocation among all of them. This quantitative mathematical
relationship is at the core of the concept of fairness. Bernoulli and Laplace expressed this notion in probability theory as the
Principle of Insufficient Reason. The generalization of this principle is the Principle of Maximum Entropy [58] which addresses
the question: ‘‘What is the fairest assignment of probabilities of several alternatives given a set of constraints?’’ Thus, the
roots of entropy as a fairness measure can be traced all the way back to the Principle of Insufficient Reason [42]. Somehow,
this important insight seems to have been missed in all these years since the discovery of entropy.

It is a historical accident that the concept of entropy was discovered in the context of thermodynamics and, therefore,
unfortunately, got tainted with the negative notions of doom and gloom, while, ironically, it really is a measure of fairness,
which is a good thing. Even its subsequent ‘‘rediscovery’’ by Shannon in the context of information theory did not helpmuch,
as entropy now got associated with uncertainty, again not a good thing. Oxford English Dictionary (OED) defines entropy
as ‘‘lack of order or predictability; gradual decline into disorder: e.g., ‘a marketplace where entropy reigns supreme’’’. Such
definitions only reaffirm the common interpretation of entropy as disorder and uncertainty. But, as we show in this paper,
OEDwasmore correct, ironically, than they knew, in their example sentence ‘amarketplace where entropy reigns supreme’,
though not in the way they meant it. Indeed, in the free market entropy does reign supreme!

It is important not to confuse entropy as a concept from physics even though it was first discovered there. In other
words, it is not like energy or momentum, which are physics-based concepts. Entropy really is a concept in probability and
statistics, an important property of distributions, whose application has been found to be useful in physics and information
theory. In this regard, it is more like variance which is a property of distributions, a statistical property, with applications in
a wide variety of domains. However, as a result of this profound, but understandable, confusion about entropy as a physical
principle, one got trapped in the popular notions of entropy as randomness, disorder, doom or uncertainty, which has
prevented people fromseeing the deep and intimate connection between statistical theories of inanimate systems composed
of non-rational entities (e.g., gasmolecules in thermodynamics) and of animate, teleological, systems of rational agents seen
in biology, economics, and sociology.

In addition, and most crucially for economics, entropy’s connection with the self-organizing free market dynamics has
not beenmade before. Our contribution demonstrates that the ideal free market for labor promotes fairness as an emergent
self-organized property and identifies entropy as the appropriate measure of this fairness. We believe that by properly
recognizing entropy as a measure of fairness, a fundamental economic and social principle, and showing how it is naturally
and intimately connected to the dynamics of the freemarket, our theorymakes a significant conceptual advance in revealing
the deep and direct connections between game theory, statistical thermodynamics, information theory, and economics.

This revelation of entropy’s true meaning also sheds new light on a decades-old fundamental question in economics, as
Samuelson [73] posed in his Nobel Lecture, ‘‘what it is that Adam Smith’s ‘invisible hand’ is supposed to be maximizing’’, or
as Monderer and Shapley [74] stated regarding the potential function P∗ in game theory, ‘‘This raises the natural question
about the economic content (or interpretation) of P∗: What do the firms try to jointly maximize?We do not have an answer
to this question’’.

Our theory suggests that what all the agents in a free market environment are jointly maximizing, i.e., what the
‘‘invisible hand’’ is maximizing, is fairness. Maximizing entropy, or game theoretic potential, is the same as maximizing
fairness collectively in economic systems, i.e., being fair to everyone under the given constraints. In other words, economic
equilibrium is reached when every agent feels she or he has been fairly compensated for her or his efforts. As we all know,
fairness is a fundamental economic principle that lies at the foundation of the free market system. It is so vital to the proper
functioning of the markets that we have regulations and watchdog agencies that break up and punish unfair practices such
as monopolies, collusion, and insider trading. Thus, it is eminently reasonable, indeed particularly reassuring, to find that
maximizing fairness collectively, i.e., maximizing entropy, is the condition for achieving economic equilibrium. We call this
result the fair market hypothesis. We claim that the ideal free market, in addition to being efficient, also promotes fairness to
the maximum level allowed by the constraints imposed on it. A related interpretation is that the game theoretic potential
captures the trade offs among utility from salary, disutility from effort and utility from fairness, for all the agents collectively.
The ideal free market tries to accommodate every agent’s individual preference regarding this trade off, given the overall
constraints on money and job openings. Thus, in a sense, the market is trying to maximize ‘‘harmony’’, an accord freely and
jointly agreed to by all the agents, where every agent feels fairly compensated for his or her effort.

In summary, for a homogeneous (i.e., 1-class) population, the maximum entropy distribution, namely, the lognormal
distribution, resulting from free market dynamics, is the fairest distribution of pay in a large organization. It is the fairest
inequality of pay in an ideal free market society.

3.6. Global trends in income inequality: model vs reality

We now compare our theory’s predictions with real-world data on income distributions from different countries. While
our theory is developed formodeling pay distributions in large corporations, its predictionsmay be comparedwith country-
wide pretax income (excluding capital gains) data as most of it is an aggregate of the pay of individuals. In essence, we are
approximating an entire country as a large corporation functioning in a free market environment. We compare our model’s
predictions for the shares of the total income by three segments of the population (namely, bottom 90%, top 10%–1% and top
1%) with those observed in different countries as reported by Piketty and his colleagues in their World Top Incomes (WTI)
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Table 2
Model predictions and sample empirical data for different countries.

Country Norway Sweden Denmark Switzerland Netherlands Australia France Germany Japan Canada UK US
Year 2011 2012 2008 2010 1999 2010 2006 2008 2010 2000 2011 2013
Currency NOK SEK DKK CHF NLG AUD EUR EUR K JPY CAD GBP USD
Minimum 139,152 159,630 146,919 37,266 28,142 29,716 15,885 17,927 1,236 11,036 11,324 15,131
Average 319,391 249,760 202,502 67,056 63,557 49,304 26,872 29,826 2,255 24,859 19,217 52,619
Maximum 3,874,714 2,580,353 1,747,643 1,047,750 416,931 688,700 366,769 630,374 32,608 528,156 365,130 1,424,300
µ 12.52 12.32 12.13 10.96 10.96 10.67 10.06 10.13 7.57 9.91 9.70 10.58
σ 0.55 0.46 0.41 0.56 0.45 0.52 0.52 0.59 0.55 0.64 0.58 0.76
Gini 0.30 0.26 0.23 0.31 0.25 0.29 0.29 0.33 0.30 0.35 0.32 0.41
Bottom 90% ideal 76.6% 79.3% 80.8% 76.6% 79.7% 77.6% 77.6% 75.4% 76.9% 73.8% 75.9% 70.0%
Top 10%–1% ideal 19.5% 17.5% 16.5% 19.6% 17.2% 18.9% 18.8% 20.4% 19.3% 21.6% 20.1% 24.2%
Top 1% ideal 3.8% 3.1% 2.8% 3.8% 3.0% 3.6% 3.6% 4.2% 3.7% 4.6% 4.0% 5.8%
Bottom 90% data 71.7% 72.1% 73.8% 66.5% 71.9% 69.0% 67.2% 60.5% 59.5% 58.9% 60.9% 53.0%
Top 10%–1% data 20.5% 20.8% 20.1% 22.9% 22.7% 21.8% 23.9% 25.6% 31.0% 28.0% 26.2% 29.5%
Top 1% data 7.8% 7.1% 6.1% 10.6% 5.4% 9.2% 8.9% 13.9% 9.5% 13.2% 12.9% 17.5%
Bottom 90% ψ −6.5% −9.1% −8.6% −13.2% −9.8% −11.0% −13.4% −19.8% −22.6% −20.2% −19.8% −24.3%
Top 10%–1% ψ 5.1% 18.4% 22.2% 16.7% 31.7% 15.7% 26.7% 25.6% 60.3% 29.7% 30.5% 21.9%
Top 1% ψ 104.2% 128.1% 117.4% 177.3% 77.8% 156.6% 150.5% 234.3% 153.8% 184.3% 221.0% 200.7%

Database [75]. While it would be more accurate to use the 2-class version of our model for the comparison, as it represents
the top ∼3% better, it is difficult to determine uniquely the parameters which define where the first population ends and
the second begins. Therefore, we use the 1-class model as the ideal reference, which predicts a single lognormal distribution
for the entire population. We fully expect real-life free market societies to deviate from ideality, but we are interested in
understanding how big the deviations are and why. While the income distributions should be lognormal in the different
countries, if they were functioning as ideal free market societies, they may have different means and variances depending
on the minimum, average and maximum annual income in the different countries, which determine the µ and σ of the
corresponding lognormal distributions. As an example, we show these parameters in Table 2 for the different countries.

The minimum, average and maximum income data are obtained from the WTI Database. For the maximum income, we
chose to use the threshold income at 99.9%. At this cutoff, the area under the lognormal curvewould correspond to 6σ . Thus,
we estimate σ by using the approximation

6σ ≈ ln(Maximum income)− ln(Minimum income) (38)

µ = ln(Average income)−
σ 2

2
. (39)

For UK and Netherlands where the 99.9% threshold data is not available, we found that it is well approximated by the
average salary of the top 0.5%, by testing this heuristic for the other countrieswhere the threshold is known. For Switzerland,
Sweden, Norway and Denmark, there is no minimum wage requirement and hence that data is not available. For these
countries, we consulted several country-specific sources to obtain guidelines about what the typical minimum wage-like
compensationmight be for entry level positions in recent years (2010–2014).We then used historic data on annual increases
for the average income of the bottom 90% of the population to deflate and back calculate the minimum wage for the past
years.

Onceµ and σ are known,we can uniquely determine the corresponding lognormal distribution, and compute the income
shares of the bottom 90%, top 10%–1%, and the top 1%. Sinceµ and σ typically vary from year to year (because of the changes
in the minimum, average, and/or maximum income from year to year), the ideal distribution of income to the bottom 90%,
top 10%–1%, and the top 1%, as predicted by the model, also varies from year to year, though not by much. As an example,
these values are displayed in Table 2 for the twelve countries (which are commonly used examples [8]), for the years shown.

Now, we know from empirical data that the free market economies of the Scandinavian countries are generally more fair
in the economic treatment of all their citizens, not just the wealthy ones. We also know that US does not do as well. We
further know that otherWestern European countries such as France, Germany, and Switzerland, are somewhere in between.

Can the model predict these outcomes? That is, just by knowing only the minimum, average and maximum incomes in
a free market society, can the model identify how fair these societies are?

To test the model along these lines, we define a new index of inequality that uses the ideal lognormal distribution (one
that is appropriate for the country under consideration) as the reference. This new measure, called Nonideal Inequality
Coefficient, ψ , is defined as:

ψ =
Actual share
Ideal share

− 100%. (40)

ψ measures the level of nonideal inequality in the system.Whenψ is zero, the systemhas the ideal level of inequality, the
fairest inequality.Whenψ is small, the level of inequality is almost ideally fair; when it is large, the inequality ismore unfair.
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Fig. 4. Global income inequality trends over the years: ψ — Ideal vs Reality. Blue lines: bottom 90%; green lines: top 10%-1%; red lines: top 1%; black
dashed lines: 0% ideal reference.

We computed the predicted income shares for the different countries for the period from ∼1920 to ∼2012, depending on
the availability of the data in the WTI Database.

We then computed ψ for the three segments (bottom 90%, top 10%–1%, top 1%) for these countries, annually, for the
corresponding time periods (sample values are shown in Table 2). These are plotted in Fig. 4. If a country was functioning
as an ideal free market system, as defined by our theory, the correspondingψ for the three segments would all be 0. This is
the reference line which is shown as the 0% line (black dotted line) in the plots.

As one can see, the model’s predictions are in general agreement with what is known about these countries regarding
their inequalities. The twelve countries are shown, roughly, in the order of generally increasing inequality according to our
model. Our objective here is not to rank them in a strict order but to show how the different countries have deviated from
ideality.

Let us examine what these charts inform us. As expected, none of them are ideal, but there are some pleasant surprises.
Consider Norway as an example. Its bottom 90% and top 10%–1% income shares are remarkably close to the ideal values over
the last 20 years.
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Its bottom 90%ψ has steadily improved, from a low of about−20% in 1929 to about−2% in 1993, and has been∼5%–10%
below the ideal value in the last ∼20 years. Similarly, its top 10%–1% ψ has come down from a high of ∼40% in 1968 to
∼5% in 2011. In fact, during ∼1991–2011, it has been hugging the ideal line quite closely, sometimes a little bit above and
sometimes a little below, typically within a narrow ±6% band.

As for the top 1%, ψ has steadily improved towards the ideal value over a period from ∼1929 (at ∼160%) to ∼52% in
∼1990. After spiking up in 2005, it has come down to ∼104% in 2011. But, clearly, top 1%’s share is much more nonideal
than that of the bottom 99%.

We find similar close-to-ideality trends in Sweden, Denmark, and Switzerland, for the bottom 90% and top 10%–1%. In
these countries, typically, the bottom 90% ψ is within ∼10% of the ideal value; the top 10%–1% ψ is within ∼15%–25%.

All these countries, which practice free market economies, are generally known to be more fair in their economic
treatment of all their citizens. But how fair are they? We could not answer this question before as there was no reference
to compare with, but now we can as our model provides such a benchmark. We find it remarkable that the income sharing
these countries have accomplished for their bottom 90% and top 10%–1% are so close to the ideal distributions. We find this
to be a surprising result because we did not expect any real-world economic system to come this close to ideality given
the simplifying assumptions and approximations in our model. For an overwhelming majority of the population (∼99%),
these countries have achieved a near-ideal degree of fairness, presumably through an enlightened combination of individual,
corporate and societal values, andmacroeconomic policies, all executed through the freemarketmechanism. Clearly, this did
not happen quickly and it took some time, as the trends show, but it is encouraging to find that throughmistakes and lessons
learnt, societies can evolve and adapt to ‘‘discover’’ a near-ideal distribution, through the free market mechanism, given a
chance through the political process. In addition, what is even more remarkable is that these free market economies did not
know, a priori, what the ideal, theoretically fairest, distribution was, and yet they seem to have ‘‘discovered’’ and maintained a
near-ideal outcome empirically on their own. While these agreements with the aggregate model predictions are encouraging,
more thorough studies are needed using detailed distribution data to validate these initial impressions and understand the
comparisons better.

From the charts, it appears that Netherlands, Australia and France are broadly in the same general class of higher
inequality compared to the first group. Next group is Germany, Japan and Canada, and, finally, UK and US are about the
same. It is curious, though, that Japan shows a much higher share for the 10%–1%, compared with even the US or UK. It will
be interesting to understand why and how this happens in Japan. Like we noted above, our objective here is not to rank
these countries in any strict order, but to show how different countries deviate from ideality.

Another interesting result is that from∼1945–1975 the US was only∼12% below the ideal level for the bottom 90%. But,
since then, it has lost a lot of ground ending at ∼24% below the ideal level in 2012. It is also interesting that the top 10%–1%
dropped from a high of ∼30% in 1963 to a low of 8% in 2007. While these two segments lost ground (strictly speaking, the
top 10%–1% is still doing well, enjoying more than its fair share of income), the top 1% went from a low of ∼100% in 1973 to
a high of ∼215% in 2012.

Economists have known that the period ∼1945–1975 was when both the bottom and middle classes were doing well,
but we see here how well they were doing in enjoying the fruits of the country’s progress. While the country might have
been more unjust in racial and gender equalities in that period compared to now, it appears to have been closer to ideality
in economic matters. Again, further studies are needed to understand why and howwe lost that sense of economic fairness,
and how to restore it.

We are aware that the 1-class model predictions for the top 1% are not as reliable as the ones for the bottom 90%–95%.
That said, we find that the Scandinavian countries, which have managed to approach a near-ideal distribution empirically
for the bottom ∼99%, seem to allocate ∼50%–100% more than the ideal share for the top 1% (see Fig. 4) during their best
periods of fairness. Even the US was in this range, though near the top end. These trends offer us a valuable insight that
∼50%–100% above the 1-class model’s ideal value is perhaps the target to strive for to ensure a near-ideal distribution for
the top 1% income share. In that regard, all countries have missed their targets for the top 1%, some more some less, in the
last 15 years or so.

A common measure used to quantify inequality is the Gini coefficient, which ranges from 0 (when everyone gets the
same income, considered to be the fairest distribution) to 1 (when all income goes to a single individual, considered to be the
most unfair outcome). While the Gini index has its uses, we disagree with the assertion that the value 0 (when all incomes
are equal) defines the fairest outcome. As we described in Section 2, equality of income is not the fairest distribution as
different people contribute differently, whether in a corporation or a society. Therefore, while lower Gini coefficient values
are generally signaling more fairer outcomes, it does not necessarily imply that they can be used to strictly rank order
countries according to their Gini coefficients, as we show next.

Since a lognormal distribution is the fairest outcome, for the sake of comparison, we computed its Gini coefficient, which
would make it the ideal value that a country should achieve, for the 12 countries (see Fig. 5). The Gini coefficient for a
lognormal distribution is given by:

Gini = 2Φ

σ

√
2


− 1 (41)

where σ is the lognormal standard deviation andΦ is the cumulative density function for standard normal distribution.
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The empirical values are obtained from the Organisation for Economic Co-operation and Development and the
Luxembourg Income Studies database and sources [76,77]. They correspond to two different time frames (the exact years are
not provided in the sources we used) and they show before and after taxes & transfers. As we have seen in Fig. 4, the general
trend of Scandinavian countries closely approaching the ideal distribution is found here as well. Their actual coefficients
(post taxes and transfers) are very close to the ideal values, and in some cases they have even over compensated and dropped
below them, according to one set of data (e.g., Denmark 0.23 vs 0.23; Norway 0.26 vs 0.30; Sweden 0.24 vs 0.26; Switzerland
0.28 vs 0.31) but not the other set (e.g., Denmark 0.33 vs 0.23; Norway 0.37 vs 0.30; Sweden 0.33 vs 0.26; Switzerland 0.31
vs 0.31). This is even the case for the US (0.36 vs 0.41), which is not equitable as we see in Fig. 4. Given our reservations
about the Gini coefficient as a measure of equity and fairness, we do not take these discrepancies too seriously and we show
the comparison only for the sake of completeness.

Despite our reservations about the Gini coefficient, there is, however, one valuable lesson to be drawn here. The pre
and post taxes & transfers values in the Gini coefficients show how macroeconomic policies can be used to achieve more
fairness that approaches ideality in practice. In that regard, it would be valuable to compare the post tax & transfers income
distributions for the three segments with the model predictions (like we did in Fig. 4 for the pretax income). Since we now
know what the target (i.e., fairest) distributions are, we could rationally design and fine tune tax & transfer policies that
result in the desired, near-ideal, income distribution for a given society.

We could also develop similar guidelines for deciding executive compensation in corporations. For instance, in November
2013, Swiss voters considered and rejected a referendum [78] thatwould have capped the CEO pay ratio to 1:12. The number
12 was decided rather arbitrarily; Swiss activists felt that the CEO could not make more in one month than what the lowest
employee makes in one year. Using our framework, one can examine this more rationally to develop guidelines which are
based on fundamental principles of economic fairness rather than arbitrary limits.

Depending on the aggregate data that is available, one can compute ψ for other segments such as deciles and quintiles.
One can then compute an overall composite coefficient Ψ , for example, by calculating

Ψ = w90ψ90 + w10−1ψ10−1 + w1ψ1 (42)

wherewmay be equally weighted, population weighted, or incomeweighted. We have not done this because it is not clear,
a priori, what weights would reflect the level of fairness (or unfairness) correctly. Careful studies are needed before any
recommendation can be along these lines. Another property of the lognormal distribution that can be used for comparison
is, of course, the entropy itself, which is given by

1
2

+
1
2
ln(2πσ 2)+ µ. (43)

One can then calculate ψen = Actual entropy/Ideal entropy − 100%. We can also develop a similar coefficient by using the
Theil Index instead of entropy, which are, of course, closely related. Again, careful further studies are needed to identify the
most useful Nonideal Inequality Coefficient. However, it is clear that we need an appropriate reference to compute that, and
it is our proposal that we use lognormal distribution as that ideal basis.

4. Discussion and conclusion

There has been some work in the past that explored the connection between game theory and statistical mechanics
[79–81].What is new about our contribution is that it shows a direct and deep connection between the dynamics of animate,
fairness-driven, utility-maximizing, rational teleological agents and inanimate, purpose-free, thermally-driven molecular
entities. Our result reveals the surprising and important connection between entropy and game theoretic potential,
demonstrating that the statistical thermodynamic equilibrium reached bymolecules is really aNash equilibrium.Webelieve
that this is a significant insight, for it suggests that statistical thermodynamics can be seen as a special case of potential game
theory. Alternatively, onemay view this insight as the generalization of the laws of statistical thermodynamics to teleological
systems, such as economic systems, yielding a new conceptual framework, which we call statistical teleodynamics, that
unifies statistical thermodynamics and population game theory. This framework bridges the conceptual gulf mentioned in
the introduction, as our ideal teleological agents are rational, fairness-seeking, utility maximizing strategists, with a natural
connection to statistical thermodynamics.

As noted, one could presumably choose other expressions to model the three elements in (1), but it is not clear whether
they will necessarily lead to the Gibbs–Boltzmann distribution, Helmholtz free energy and entropy in the limiting case of
the thermodynamic game involvingmolecules.We find this correspondence to be particularly appealing, in fact comforting,
that statistical teleodynamics properly reduces to well-known results in statistical thermodynamics as a limiting case. This
universality has a nice ring to it.

Another important observation is that, in statistical thermodynamics, the claim about the equilibrium state is a probabilis-
tic one — it is the most probable outcome, one where entropy is maximum. However, our game theoretic result shows that
the Nash equilibrium state reached by the molecules, the one that maximizes the potential φ(x), is a deterministic outcome,
not a probabilistic one. This observation has potentially important implications concerning the philosophical foundations
of statistical thermodynamics, and that of information theory, such as ergodicity and metric transitivity [82,71,83,58,59,
84–86], but we are not addressing them here.
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(a) Source: Organisation for Economic Co-operation and Development
(OECD) [76].

(b) Source: Luxembourg Income Study (LIS) Database [77].

Fig. 5. Gini coefficients (early to mid 2000s).

As noted in the introduction, researchers in the econophysics community have proposed thermodynamical models for
the emergence of income and wealth distributions [30,70,33,32,20,25,23,24]. Even though our contribution also utilizes
concepts from statistical mechanics, it takes an entirely different perspective by addressing the fairness issue. The fairness
question has not been addressed in the past econophysics approaches. On the other hand, there has been a great amount of
work by economists on fairness but these approaches have not addressed whether the free market dynamics will lead to a
fair distribution. Indeed, the conventional wisdom in economics is that the free market for labor cares only about efficiency
and not fairness. Thus, there is a disconnect between the econophysics and mainstream economics communities in this
context. The former has proposed models inspired by statistical mechanical analogues but has not interpreted entropy in
economically relevant terms — in particular, it has not addressed the issue of fairness in its theories. In contrast, the latter,
which has proposed many theories of fairness, has not recognized the relevance of, and connected with, the statistical
thermodynamic theories. Our contribution is to identify the deep connections between these two as well as with game
theory, thereby integrating the apparently disparate approaches into a unified conceptual framework.

Econophysicists, typically, [30,23,24] like to claim that the bottom ∼95% follows Boltzmann–Gibbs (BG) exponential
distribution or a gamma distribution, not lognormal, and that the top∼3%–5% follows a Pareto distribution.We beg to differ
on both counts as we have shown in this paper. One main difficulty with the BG exponential or the gamma distribution
claim is the interpretation of the underlying economic notions. For example, from the maximum entropy procedure which
underlie these claims, we can show that the BG exponential distribution implies a utility function that is linear in salary [60]
which conflicts with the principle of diminishing marginal utility, one of the founding concepts of economic theory. At the
risk of repeating ourselves,we emphasize that in our frameworkwehave tried to formulate an approach that is sensible from
a microeconomic perspective — e.g., modeling agents with reasonable utility preferences, rational agents making decisions
motivated by utility maximization and not due to random events, recognizing entropy as fairness, etc.

Given that different employees in an organization (or different people in a society) have different talents, therebymaking
different contributions, some more some less, we expect them to be compensated differently. So, we naturally expect an
unequal distribution of pay in an organization. This is only fair as people who contribute more should be paidmore. But how
much more? What is the fairest distribution of pay? In other words, what is the fairest inequality of pay? This is at the heart of
the inequality debate. We could not answer such questions before. Our theory suggests that the lognormal distribution is
the fairest inequality of pay for a homogeneous population. One may view our result as an ‘economic law’ in the statistical
thermodynamics sense. The ideal free market, guided by the ‘‘invisible hand’’, will self-organize to ‘‘discover’’ and obey this
economic law if allowed to function freely without collusion or other such unfair interferences subverting the free market
dynamics. This result is the economic equivalent of the Gibbs–Boltzmann exponential distribution in thermodynamics.

It is one thing tomake such a prediction from theory but another to observe it in practice. So, it is indeed quite remarkable
that the Scandinavian free market economies seem to have empirically ‘‘discovered’’ a near-ideal distribution of income for
the bottom ∼99% and have operated their economies in that close range for decades. Even the US economy operated a lot
closer to ideality, during∼1945–75, than it does now. It is important to emphasize that in those three decades US performed
extremely well economically, dominating the global economy in almost every sector. The lower distribution of income to
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the top 1% did not disincentivize them from taking calculated risks, innovating, or performing at their peak in their pursuit
of income and wealth.

There are obvious limitations to our model — we have assumed perfectly rational agents, no externalities, ideal free
market conditions, and so on, which are clearly not valid in real life. However, our objective was to develop a general mi-
croeconomic framework, identify key principles, and make predictions that are not restricted by market specific details and
nuances. Nevertheless, despite such simplifying assumptions, it is encouraging that our predictions are supported by em-
pirical data. Additional work is needed to examine whether there are other payoff functions which can explain and predict
better than what we have proposed. Further research is also needed to determine how to estimate the parameters for the
2-class model so that comparisons can be made with the empirical distributions. The next steps are also to conduct more
comprehensive studies of pay distributions in various organizations, and income distributions in different countries, in or-
der to understand in greater detail the deviations from ideality in the market place. Agencies such as the Bureau of Labor
Statistics and National Bureau of Economic Research in the US (and similar agencies in other countries, World Bank, etc.)
could organize task forces to gather pay data from various companies and organizations. The data should be so grouped to
analyze pay distribution patterns across several dimensions such as: (i) organization size — small, medium, large, and very
large number of employees, (ii) different industrial sectors, (iii) different types such as private corporations, governments
(state and federal), non-profit organizations, etc. Similar studies should be conducted in other countries as well so that we
can better understand global patterns.

Further studies are also needed to compare the model predictions with post tax & transfer income data from different
countries. Clearly, it is important to understand why and how the deviations from ideality occur in real life. To address this,
in addition to gathering empirical data, it would be good to build a large-scale agent-based simulation program (along the
lines we presented in 3.4.2) that also accounts for taxes, savings rates, returns on assets etc. Such a program can help us
carry out various ‘‘what if’’ scenarios to test the effects of different tax & transfer policies.

As we all know, free markets can sometimes go to the extremes, such as in asset bubbles, or be subverted by unfair
practices such as collusion, which lead to unstable and unproductive outcomes for the society at large. Many free market
societies have learnt, over the years, that it is in their best interest to strategically and judicially intervene and regulate the
market mechanism to avoid suchmacroscopic instabilities and unproductive consequences. In a similar manner, we believe
the current excesses in income inequality and executive compensation are the results of a subverted free market system. As
others have argued [1,3–5,8,87], it is imperative to consider strategic interventions to correct the increasingly worrisome
income and wealth inequality to improve free market’s performance and societal function. By defining and identifying the
ideal outcome, we hope that our theory provides an intellectual framework that could be suitably adapted for carefully
designing such interventions through macroeconomic policies.
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